Suppr超能文献

一种用于缺血性心脏病诊断的心电图信号分类的神经模糊方法。

A neuro-fuzzy approach to classification of ECG signals for ischemic heart disease diagnosis.

作者信息

Neagoe Victor -Emil, Iatan Iuliana -Florentina, Grunwald Sorin

机构信息

Dept. of Applied Electronics and Information Engineering, Polytechnic University, Bucharest, Romania.

出版信息

AMIA Annu Symp Proc. 2003;2003:494-8.

Abstract

The paper focuses on the neuro-fuzzy classifier called Fuzzy-Gaussian Neural Network (FGNN) to recognize the ECG signals for Ischemic Heart Disease (IHD) diagnosis. The proposed ECG processing cascade has two main stages: (a) Feature extraction from the QRST zone of ECG signals using either the Principal Component Analysis (PCA) or the Discrete Cosine Transform (DCT); (b) Pattern classification for IHD diagnosis using the FGNN. We have performed the software implementation and have experimented the proposed neuro-fuzzy model for IHD diagnosis. We have used an ECG database of 40 subjects, where 20 subjects are IHD patients and the other 20 are normal ones. The best performance has been of 100% IHD recognition score. The result is exciting as much as we have used only one lead (V5) of ECG records as input data, while the current diagnosis approaches require the set of 12 lead ECG signals!

摘要

本文重点研究了一种名为模糊高斯神经网络(FGNN)的神经模糊分类器,用于识别心电图信号以诊断缺血性心脏病(IHD)。所提出的心电图处理级联有两个主要阶段:(a)使用主成分分析(PCA)或离散余弦变换(DCT)从心电图信号的QRST波段进行特征提取;(b)使用FGNN进行IHD诊断的模式分类。我们进行了软件实现,并对所提出的用于IHD诊断的神经模糊模型进行了实验。我们使用了一个包含40名受试者的心电图数据库,其中20名受试者是IHD患者,另外20名是正常人。最佳性能是IHD识别分数达到100%。这个结果令人兴奋,因为我们仅使用了心电图记录的一个导联(V5)作为输入数据,而当前的诊断方法需要12导联的心电图信号集!

相似文献

7
Ischemia detection via ECG using ANFIS.使用自适应神经模糊推理系统通过心电图检测缺血。
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:1163-6. doi: 10.1109/IEMBS.2008.4649368.

本文引用的文献

1
An intelligent framework for the classification of the 12-lead ECG.
Artif Intell Med. 1999 Jul;16(3):205-22. doi: 10.1016/s0933-3657(99)00006-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验