Babol University of Technology, Iran.
Comput Methods Programs Biomed. 2010 Aug;99(2):179-94. doi: 10.1016/j.cmpb.2010.04.013. Epub 2010 May 26.
Automatic classification of electrocardiogram (ECG) signals is vital for clinical diagnosis of heart disease. This paper investigates the design of an efficient system for recognition of the premature ventricular contraction from the normal beats and other heart diseases. This system includes three main modules: denoising module, feature extraction module and classifier module. In the denoising module, it is proposed the stationary wavelet transform for noise reduction of the electrocardiogram signals. In the feature extraction module a proper combination of the morphological-based features and timing interval-based features are proposed. As the classifier, several supervised classifiers are investigated; they are: a number of multi-layer perceptron neural networks with different number of layers and training algorithms, support vector machines with different kernel types, radial basis function and probabilistic neural networks. Also, for comparison the proposed features, we have considered the wavelet-based features. It has done comprehensive simulations in order to achieve a high efficient system for ECG beat classification from 12 files obtained from the MIT-BIH arrhythmia database. Simulation results show that best results are achieved about 97.14% for classification of ECG beats.
心电图(ECG)信号的自动分类对心脏病的临床诊断至关重要。本文研究了一种从正常搏动和其他心脏病中识别室性早搏的高效系统的设计。该系统包括三个主要模块:去噪模块、特征提取模块和分类器模块。在去噪模块中,提出了平稳小波变换来降低心电图信号的噪声。在特征提取模块中,提出了基于形态学的特征和基于时间间隔的特征的适当组合。作为分类器,研究了几种监督分类器:具有不同层数和训练算法的多个多层感知器神经网络、具有不同核类型的支持向量机、径向基函数和概率神经网络。此外,为了进行比较,我们还考虑了基于小波的特征。针对从麻省理工学院-贝斯以色列医院心律失常数据库获得的 12 个文件,进行了全面的仿真,以实现高效的心电图分类系统。仿真结果表明,对于心电图的分类,最好的结果约为 97.14%。