Suppr超能文献

用于消费者健康资源的机器翻译支持的跨语言信息检索。

Machine translation-supported cross-language information retrieval for a consumer health resource.

作者信息

Rosemblat Graciela, Gemoets Darren, Browne Allen C, Tse Tony

机构信息

National Library of Medicine, Bethesda, Maryland, USA.

出版信息

AMIA Annu Symp Proc. 2003;2003:564-8.

Abstract

The U.S. National Institutes of Health, through its National Library of Medicine, developed ClinicalTrials.gov to provide the public with easy access to information on clinical trials on a wide range of conditions or diseases. Only English language information retrieval is currently supported. Given the growing number of Spanish speakers in the U.S. and their increasing use of the Web, we anticipate a significant increase in Spanish-speaking users. This study compares the effectiveness of two common cross-language information retrieval methods using machine translation, query translation versus document translation, using a subset of genuine user queries from ClinicalTrials.gov. Preliminary results conducted with the ClinicalTrials.gov search engine show that in our environment, query translation is statistically significantly better than document translation. We discuss possible reasons for this result and we conclude with suggestions for future work.

摘要

美国国立卫生研究院通过其国立医学图书馆开发了ClinicalTrials.gov,以便向公众提供有关各种病症或疾病临床试验信息的便捷获取途径。目前仅支持英文信息检索。鉴于美国说西班牙语的人数不断增加以及他们对网络的使用日益增多,我们预计说西班牙语的用户会大幅增加。本研究使用ClinicalTrials.gov上的一部分真实用户查询,比较了两种常见的使用机器翻译的跨语言信息检索方法的有效性,即查询翻译与文档翻译。使用ClinicalTrials.gov搜索引擎进行的初步结果表明,在我们的环境中,查询翻译在统计学上显著优于文档翻译。我们讨论了这一结果的可能原因,并以对未来工作的建议作为结论。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验