Suppr超能文献

基于从头算分子轨道理论的气相N3、N3-、N5+和N5-的生成焓,N5(+)N3(-)和N5(+)N5(-)的稳定性预测,以及N5(+)N3(-)不稳定性的实验证据。

Enthalpies of formation of gas-phase N3, N3-, N5+, and N5- from Ab initio molecular orbital theory, stability predictions for N5(+)N3(-) and N5(+)N5(-), and experimental evidence for the instability of N5(+)N3(-).

作者信息

Dixon David A, Feller David, Christe Karl O, Wilson William W, Vij Ashwani, Vij Vandana, Jenkins H Donald Brooke, Olson Ryan M, Gordon Mark S

机构信息

Chemical Sciences Division and Fundamental Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.

出版信息

J Am Chem Soc. 2004 Jan 28;126(3):834-43. doi: 10.1021/ja0303182.

Abstract

Ab initio molecular orbital theory has been used to calculate accurate enthalpies of formation and adiabatic electron affinities or ionization potentials for N3, N3-, N5+, and N5- from total atomization energies. The calculated heats of formation of the gas-phase molecules/ions at 0 K are DeltaHf(N3(2Pi)) = 109.2, DeltaHf(N3-(1sigma+)) = 47.4, DeltaHf(N5-(1A1')) = 62.3, and DeltaHf(N5+(1A1)) = 353.3 kcal/mol with an estimated error bar of +/-1 kcal/mol. For comparison purposes, the error in the calculated bond energy for N2 is 0.72 kcal/mol. Born-Haber cycle calculations, using estimated lattice energies and the adiabatic ionization potentials of the anions and electron affinities of the cations, enable reliable stability predictions for the hypothetical N5(+)N3(-) and N5(+)N5(-) salts. The calculations show that neither salt can be stabilized and that both should decompose spontaneously into N3 radicals and N2. This conclusion was experimentally confirmed for the N5(+)N3(-) salt by low-temperature metathetical reactions between N5SbF6 and alkali metal azides in different solvents, resulting in violent reactions with spontaneous nitrogen evolution. It is emphasized that one needs to use adiabatic ionization potentials and electron affinities instead of vertical potentials and affinities for salt stability predictions when the formed radicals are not vibrationally stable. This is the case for the N5 radicals where the energy difference between vertical and adiabatic potentials amounts to about 100 kcal/mol per N5.

摘要

从头算分子轨道理论已被用于根据总原子化能计算N3、N3-、N5+和N5-的精确生成焓以及绝热电子亲和能或电离势。计算得到的0 K时气相分子/离子的生成热为:ΔHf(N3(2Π)) = 109.2,ΔHf(N3-(1σ+)) = 47.4,ΔHf(N5-(1A1')) = 62.3,以及ΔHf(N5+(1A1)) = 353.3 kcal/mol,估计误差范围为±1 kcal/mol。为作比较,计算得到的N2键能误差为0.72 kcal/mol。利用估计的晶格能以及阴离子的绝热电离势和阳离子的电子亲和能进行玻恩-哈伯循环计算,能够对假设的N5(+)N3(-)和N5(+)N5(-)盐进行可靠的稳定性预测。计算结果表明,这两种盐都无法稳定存在,都会自发分解为N3自由基和N2。对于N5(+)N3(-)盐,通过在不同溶剂中N5SbF6与碱金属叠氮化物之间的低温复分解反应,实验证实了这一结论,反应剧烈并伴有氮气自发逸出。需要强调的是,当形成的自由基振动不稳定时,在进行盐稳定性预测时需要使用绝热电离势和电子亲和能,而不是垂直势和亲和能。N5自由基就是这种情况,每个N5的垂直势和绝热势之间的能量差约为100 kcal/mol。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验