Suppr超能文献

非同源DNA末端连接

Non-homologous DNA end joining.

作者信息

Pastwa Elzbieta, Błasiak Janusz

机构信息

Department of Medicinal Chemistry, Medical University of Łódz, Łódz, Poland.

出版信息

Acta Biochim Pol. 2003;50(4):891-908.

Abstract

DNA double-strand breaks (DSBs) are a serious threat for the cell and when not repaired or misrepaired can result in mutations or chromosome rearrangements and eventually in cell death. Therefore, cells have evolved a number of pathways to deal with DSB including homologous recombination (HR), single-strand annealing (SSA) and non-homologous end joining (NHEJ). In mammals DSBs are primarily repaired by NHEJ and HR, while HR repair dominates in yeast, but this depends also on the phase of the cell cycle. NHEJ functions in all kinds of cells, from bacteria to man, and depends on the structure of DSB termini. In this process two DNA ends are joined directly, usually with no sequence homology, although in the case of same polarity of the single stranded overhangs in DSBs, regions of microhomology are utilized. The usage of microhomology is common in DNA end-joining of physiological DSBs, such as at the coding ends in V(D)J (variable(diversity) joining) recombination. The main components of the NHEJ system in eukaryotes are the catalytic subunit of DNA protein kinase (DNA-PK(cs)), which is recruited by DNA Ku protein, a heterodimer of Ku70 and Ku80, as well as XRCC4 protein and DNA ligase IV. A complex of Rad50/Mre11/Xrs2, a family of Sir proteins and probably other yet unidentified proteins can be also involved in this process. NHEJ and HR may play overlapping roles in the repair of DSBs produced in the S phase of the cell cycle or at replication forks. Aside from DNA repair, NHEJ may play a role in many different processes, including the maintenance of telomeres and integration of HIV-1 genome into a host genome, as well as the insertion of pseudogenes and repetitive sequences into the genome of mammalian cells. Inhibition of NHEJ can be exploited in cancer therapy in radio-sensitizing cancer cells. Identification of all key players and fundamental mechanisms underlying NHEJ still requires further research.

摘要

DNA双链断裂(DSB)对细胞构成严重威胁,若未得到修复或修复错误,可能导致突变或染色体重排,最终致使细胞死亡。因此,细胞进化出了多种应对DSB的途径,包括同源重组(HR)、单链退火(SSA)和非同源末端连接(NHEJ)。在哺乳动物中,DSB主要通过NHEJ和HR进行修复,而在酵母中HR修复占主导地位,但这也取决于细胞周期的阶段。NHEJ在从细菌到人类的各种细胞中均发挥作用,且依赖于DSB末端的结构。在此过程中,两条DNA末端直接连接,通常无需序列同源性,不过在DSB中单链突出端具有相同极性的情况下,会利用微同源区域。微同源性的使用在生理性DSB的DNA末端连接中很常见,比如在V(D)J(可变(多样)连接)重组的编码末端。真核生物中NHEJ系统的主要成分包括DNA蛋白激酶的催化亚基(DNA-PK(cs)),它由DNA Ku蛋白招募,Ku蛋白是Ku70和Ku80的异二聚体,还有XRCC4蛋白和DNA连接酶IV。Rad50/Mre11/Xrs2复合物、Sir蛋白家族以及可能其他尚未鉴定的蛋白质也可能参与此过程。NHEJ和HR在细胞周期S期或复制叉处产生的DSB修复中可能发挥重叠作用。除了DNA修复,NHEJ可能在许多不同过程中发挥作用,包括端粒的维持、HIV-1基因组整合到宿主基因组中,以及假基因和重复序列插入哺乳动物细胞基因组。抑制NHEJ可用于癌症治疗,使癌细胞对辐射敏感。确定NHEJ的所有关键参与者和基本机制仍需进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验