Suppr超能文献

使用多元线性回归分析对FDG-PET定量进行非侵入性输入函数估计:体内数据的模拟与验证

Estimating the input function non-invasively for FDG-PET quantification with multiple linear regression analysis: simulation and verification with in vivo data.

作者信息

Fang Yu-Hua, Kao Tsair, Liu Ren-Shyan, Wu Liang-Chih

机构信息

Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan.

出版信息

Eur J Nucl Med Mol Imaging. 2004 May;31(5):692-702. doi: 10.1007/s00259-003-1412-x. Epub 2004 Jan 23.

Abstract

A novel statistical method, namely Regression-Estimated Input Function (REIF), is proposed in this study for the purpose of non-invasive estimation of the input function for fluorine-18 2-fluoro-2-deoxy- d-glucose positron emission tomography (FDG-PET) quantitative analysis. We collected 44 patients who had undergone a blood sampling procedure during their FDG-PET scans. First, we generated tissue time-activity curves of the grey matter and the whole brain with a segmentation technique for every subject. Summations of different intervals of these two curves were used as a feature vector, which also included the net injection dose. Multiple linear regression analysis was then applied to find the correlation between the input function and the feature vector. After a simulation study with in vivo data, the data of 29 patients were applied to calculate the regression coefficients, which were then used to estimate the input functions of the other 15 subjects. Comparing the estimated input functions with the corresponding real input functions, the averaged error percentages of the area under the curve and the cerebral metabolic rate of glucose (CMRGlc) were 12.13+/-8.85 and 16.60+/-9.61, respectively. Regression analysis of the CMRGlc values derived from the real and estimated input functions revealed a high correlation (r=0.91). No significant difference was found between the real CMRGlc and that derived from our regression-estimated input function (Student's t test, P>0.05). The proposed REIF method demonstrated good abilities for input function and CMRGlc estimation, and represents a reliable replacement for the blood sampling procedures in FDG-PET quantification.

摘要

本研究提出了一种新的统计方法,即回归估计输入函数(REIF),用于非侵入性估计氟-18 2-氟-2-脱氧-D-葡萄糖正电子发射断层扫描(FDG-PET)定量分析中的输入函数。我们收集了44例在FDG-PET扫描期间接受过采血程序的患者。首先,我们使用分割技术为每个受试者生成灰质和全脑的组织时间-活性曲线。这两条曲线不同间隔的总和用作特征向量,其中还包括净注射剂量。然后应用多元线性回归分析来寻找输入函数与特征向量之间的相关性。在对体内数据进行模拟研究后,应用29例患者的数据计算回归系数,然后用于估计其他l5例受试者的输入函数。将估计的输入函数与相应的真实输入函数进行比较,曲线下面积和葡萄糖脑代谢率(CMRGlc)的平均误差百分比分别为12.13±8.85和16.60±9.61。对从真实和估计的输入函数得出的CMRGlc值进行回归分析,结果显示高度相关(r=0.91)。真实的CMRGlc与我们通过回归估计的输入函数得出的CMRGlc之间未发现显著差异(Student t检验,P>0.05)。所提出的REIF方法在输入函数和CMRGlc估计方面表现出良好的能力,是FDG-PET定量分析中采血程序的可靠替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验