Chen K, Chen X, Renaut R, Alexander G E, Bandy D, Guo H, Reiman E M
The Banner Alzheimer Institute and the Banner Good Samaritan Positron Emission Tomography Center, Phoenix, AZ, USA.
Phys Med Biol. 2007 Dec 7;52(23):7055-71. doi: 10.1088/0031-9155/52/23/019. Epub 2007 Nov 15.
We previously developed a noninvasive technique for the quantification of fluorodeoxyglucose (FDG) positron emission tomography (PET) images using an image-derived input function obtained from a manually drawn carotid artery region. Here, we investigate the use of independent component analysis (ICA) for more objective identification of the carotid artery and surrounding tissue regions. Using FDG PET data from 22 subjects, ICA was applied to an easily defined cubical region including the carotid artery and neighboring tissue. Carotid artery and tissue time activity curves and three venous samples were used to generate spillover and partial volume-corrected input functions and to calculate the parametric images of the cerebral metabolic rate for glucose (CMRgl). Different from a blood-sampling-free ICA approach, the results from our ICA approach are numerically well matched to those based on the arterial blood sampled input function. In fact, the ICA-derived input functions and CMRgl measurements were not only highly correlated (correlation coefficients >0.99) to, but also highly comparable (regression slopes between 0.92 and 1.09), with those generated using arterial blood sampling. Moreover, the reliability of the ICA-derived input function remained high despite variations in the location and size of the cubical region. The ICA procedure makes it possible to quantify FDG PET images in an objective and reproducible manner.
我们之前开发了一种非侵入性技术,通过从手动绘制的颈动脉区域获得的图像衍生输入函数来定量分析氟脱氧葡萄糖(FDG)正电子发射断层扫描(PET)图像。在此,我们研究使用独立成分分析(ICA)更客观地识别颈动脉和周围组织区域。利用22名受试者的FDG PET数据,将ICA应用于一个易于定义的包括颈动脉和邻近组织的立方体区域。颈动脉和组织的时间-活性曲线以及三个静脉样本用于生成溢出和部分容积校正的输入函数,并计算葡萄糖脑代谢率(CMRgl)的参数图像。与无血样采集的ICA方法不同,我们的ICA方法结果在数值上与基于动脉血样采集输入函数的结果非常匹配。事实上,ICA衍生的输入函数和CMRgl测量值不仅与动脉血样采集生成的结果高度相关(相关系数>0.99),而且具有高度可比性(回归斜率在0.92至1.09之间)。此外,尽管立方体区域的位置和大小存在变化,ICA衍生输入函数的可靠性仍然很高。ICA程序使得以客观且可重复的方式定量分析FDG PET图像成为可能。