Suppr超能文献

通过在具有可变维度的二元变换化学描述符空间中映射一致位置进行分子相似性分析和虚拟筛选。

Molecular similarity analysis and virtual screening by mapping of consensus positions in binary-transformed chemical descriptor spaces with variable dimensionality.

作者信息

Godden Jeffrey W, Furr John R, Xue Ling, Stahura Florence L, Bajorath Jürgen

机构信息

Department of Computer-Aided Drug Discovery, Albany Molecular Research, Inc, AMRI Bothell Research Center, 18804 North Creek Parkway, Bothell, Washington 98011, USA.

出版信息

J Chem Inf Comput Sci. 2004 Jan-Feb;44(1):21-9. doi: 10.1021/ci0302963.

Abstract

A novel compound classification algorithm is described that operates in binary molecular descriptor spaces and groups active compounds together in a computationally highly efficient manner. The method involves the transformation of continuous descriptor value ranges into a binary format, subsequent definition of simplified descriptor spaces, identification of consensus positions of specific compound sets in these spaces, and iterative adjustments of the dimensionality of the descriptor spaces in order to discriminate compounds sharing similar activity from others. We term this approach Dynamic Mapping of Consensus positions (DMC) because the definition of reference spaces is tuned toward specific compound classes and their dimensionality is increased as the analysis proceeds. When applied to virtual screening, sets of bait compounds are added to a large screening database to identify hidden active molecules. In these calculations, molecules that map to consensus positions after elimination of most of the database compounds are considered hit candidates. In a benchmark study on five biological activity classes, hits for randomly assembled sets of bait molecules were correctly identified in 95% of virtual screening calculations in a source database containing more than 1.3 million molecules, thus providing a measure of the sensitivity of the DMC technique.

摘要

描述了一种新型化合物分类算法,该算法在二元分子描述符空间中运行,并以计算高效的方式将活性化合物聚集在一起。该方法包括将连续描述符值范围转换为二元格式,随后定义简化的描述符空间,识别这些空间中特定化合物集的共识位置,以及迭代调整描述符空间的维度,以便区分具有相似活性的化合物与其他化合物。我们将这种方法称为共识位置动态映射(DMC),因为参考空间的定义针对特定化合物类别进行调整,并且随着分析的进行其维度会增加。当应用于虚拟筛选时,将诱饵化合物集添加到大型筛选数据库中以识别隐藏的活性分子。在这些计算中,在消除大部分数据库化合物后映射到共识位置的分子被视为命中候选物。在一项针对五个生物活性类别的基准研究中,在一个包含超过130万个分子的源数据库中,95%的虚拟筛选计算正确识别了随机组装的诱饵分子集的命中物,从而提供了DMC技术灵敏度的一种度量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验