Suppr超能文献

用于鉴定活性化合物的活性特异性描述符值范围的确定与映射。

Determination and mapping of activity-specific descriptor value ranges for the identification of active compounds.

作者信息

Eckert Hanna, Bajorath Jürgen

机构信息

Department of Life Science Informatics, B-IT, Rheinische Friedrich-Wilhelms-Universität, Dahlmannstrasse 2, D-53113 Bonn, Germany.

出版信息

J Med Chem. 2006 Apr 6;49(7):2284-93. doi: 10.1021/jm051110p.

Abstract

MAD (Mapping to Activity class-specific Descriptor value ranges) is a novel molecular similarity method that relies on the identification of activity-specific descriptors. Applying a categorical descriptor scoring function, value ranges of molecular descriptors in screening databases are compared with those in classes of active compounds and descriptors displaying significant deviations are selected. In order to identify new actives, database molecules are mapped to class-specific value ranges and ranked using a similarity function. As a mapping algorithm, MAD is distinct from many other molecular similarity and virtual screening methods. In systematic virtual screening trials, for small selection sets of only 30 database compounds, average hit and recovery rates over six activity classes ranged from about 10% to 25% and about 25% to 75%, respectively. Moreover, when mining a database of bioactive molecules many similar compounds were selected (with hit rates between about 15% and 79%). Our findings suggest that it is possible to generate compound class-directed descriptor reference spaces for molecular similarity analysis.

摘要

MAD(映射到特定活性类别的描述符值范围)是一种新颖的分子相似性方法,它依赖于识别特定活性的描述符。应用分类描述符评分函数,将筛选数据库中分子描述符的值范围与活性化合物类别中的值范围进行比较,并选择显示出显著偏差的描述符。为了识别新的活性物质,将数据库分子映射到特定类别的值范围,并使用相似性函数进行排名。作为一种映射算法,MAD与许多其他分子相似性和虚拟筛选方法不同。在系统的虚拟筛选试验中,对于仅30种数据库化合物的小选择集,六个活性类别上的平均命中率和回收率分别约为10%至25%和约25%至75%。此外,在挖掘生物活性分子数据库时,选择了许多相似的化合物(命中率在约15%至79%之间)。我们的研究结果表明,有可能生成用于分子相似性分析的化合物类别导向的描述符参考空间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验