Yip Linda, Kwok Yin Nam
Department of Physiology, University of British Columbia, Vancouver, Canada.
J Pharmacol Exp Ther. 2004 May;309(2):804-15. doi: 10.1124/jpet.103.061986. Epub 2004 Jan 23.
Adenosine has been demonstrated to inhibit gastric acid secretion. In the rat stomach, this inhibitory effect may be mediated indirectly by increasing the release of somatostatin-like immunoreactivity (SLI). Results show that adenosine analogs augmented SLI release in the isolated vascularly perfused rat stomach. The rank order of potency of the analogs in stimulating SLI release was 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) approximately 5'-N-ethylcarboxamidoadenosine > 2-chloroadenosine > R-(-)-N(6)-(2-phenylisopropyl)adenosine >1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-beta-d-ribofuranuronamide > N(6)-cyclopentyladenosine approximately N(6)-cyclohexyladenosine > S-(+)-N(6)-(2-phenylisopropyl) adenosine, suggesting the involvement of the A(2A) receptor. In agreement, 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a] [1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385), an A(2A) receptor antagonist, was shown to abolish the adenosine- and CGS 21680-stimulated SLI release. Immunohistochemical studies reveal the presence of A(2A) receptor immunoreactivity on the gastric plexi and mucosal D-cells, but not on parietal cells and G-cells, suggesting that adenosine may act directly on D-cells or indirectly on the gastric plexi to augment SLI release. The present study also demonstrates that the structure of the mucosal A(2A) receptor is identical to that in the rat brain, and that alternative splicing of this gene does not occur. A real-time reverse transcription-polymerase chain reaction assay has also been established to quantify the levels of A(2A) receptor mRNA. Results show that gastric tissues contained significantly lower levels of A(2A) receptor mRNA compared with the striatum. The lowest level was detected in the mucosa. In conclusion, adenosine may act on A(2A) receptors to augment SLI release and consequently control gastric acid secretion.
腺苷已被证明可抑制胃酸分泌。在大鼠胃中,这种抑制作用可能通过增加生长抑素样免疫反应性(SLI)的释放而间接介导。结果表明,腺苷类似物可增强离体血管灌注大鼠胃中的SLI释放。这些类似物刺激SLI释放的效力顺序为:2-p-(2-羧乙基)苯乙氨基-5'-N-乙基羧酰胺腺苷(CGS 21680)≈5'-N-乙基羧酰胺腺苷>2-氯腺苷>R-(-)-N(6)-(2-苯异丙基)腺苷>1-脱氧-1-[6-[[(3-碘苯基)甲基]氨基]-9H-嘌呤-9-基]-N-甲基-β-D-核糖呋喃脲苷>N(6)-环戊基腺苷≈N(6)-环己基腺苷>S-(+)-N(6)-(2-苯异丙基)腺苷,提示A(2A)受体参与其中。与此一致的是,A(2A)受体拮抗剂4-(2-[7-氨基-2-(2-呋喃基)[1,2,4]三唑并[2,3-a][1,3,5]三嗪-5-基氨基]乙基)苯酚(ZM 241385)可消除腺苷和CGS 21680刺激的SLI释放。免疫组织化学研究显示,胃丛和黏膜D细胞上存在A(2A)受体免疫反应性,而壁细胞和G细胞上则没有,这表明腺苷可能直接作用于D细胞或间接作用于胃丛以增强SLI释放。本研究还表明,黏膜A(2A)受体的结构与大鼠脑中的相同,且该基因不会发生可变剪接。还建立了实时逆转录-聚合酶链反应测定法来定量A(2A)受体mRNA的水平。结果显示,与纹状体相比,胃组织中A(2A)受体mRNA的水平显著较低。在黏膜中检测到的水平最低。总之,腺苷可能作用于A(2A)受体以增强SLI释放,从而控制胃酸分泌。