Suppr超能文献

保存种子中分子流动性的温度依赖性。

Temperature dependency of molecular mobility in preserved seeds.

作者信息

Walters Christina

机构信息

United States Department of Agriculture, Agricultural Research Service, National Center for Genetic Resources Preservation, Fort Collins, Colorado 80521, USA.

出版信息

Biophys J. 2004 Feb;86(2):1253-8. doi: 10.1016/S0006-3495(04)74199-5.

Abstract

Although cryogenic storage is presumed to provide nearly infinite longevity to cells, the actual timescale for changes in viability has not been addressed theoretically or empirically. Molecular mobility within preserved biological materials provides a first approximation of the rate of deteriorative reactions that ultimately affect shelf-life. Here, temperature effects on molecular mobility in partially dried seeds are calculated from heat capacities, measured using differential scanning calorimetry, and models for relaxation of glasses based on configurational entropy. Based on these analyses, glassy behavior in seeds containing 0.07 g H(2)O/g dm followed strict Vogel-Tamman-Fulcher (VTF) behavior at temperatures above and just below the glass transition temperature (Tg) at 28 degrees C. Temperature dependency of relaxation times followed Arrhenius kinetics as temperatures decreased well below Tg. The transition from VTF to Arrhenius kinetics occurred between approximately 5 and -10 degrees C. Overall, relaxation times calculated for seeds containing 0.07 g H(2)O/g dm decreased by approximately eight orders of magnitude when seeds were cooled from 60 to -60 degrees C, comparable to the magnitude of change in aging kinetics reported for seeds and pollen stored at a similar temperature range. The Kauzmann temperature (T(K)), often considered the point at which molecular mobility of glasses is practically nil, was calculated as -42 degrees C. Calculated relaxation times, temperature coefficients lower than expected from VTF kinetics, and T(K) that is 70 degrees C below Tg suggest there is molecular mobility, albeit limited, at cryogenic temperatures.

摘要

尽管低温储存被认为能使细胞具有几乎无限的寿命,但关于活力变化的实际时间尺度尚未从理论或实证角度进行探讨。保存的生物材料中的分子流动性提供了对最终影响保质期的劣化反应速率的初步近似。在此,通过差示扫描量热法测量的热容量以及基于构型熵的玻璃态弛豫模型,计算了温度对部分干燥种子中分子流动性的影响。基于这些分析,含水量为0.07 g H₂O/g dm的种子在高于和略低于28℃的玻璃化转变温度(Tg)时表现出严格的Vogel-Tamman-Fulcher(VTF)行为。当温度降至远低于Tg时,弛豫时间的温度依赖性遵循阿累尼乌斯动力学。从VTF动力学向阿累尼乌斯动力学的转变发生在大约5℃至-10℃之间。总体而言,当种子从60℃冷却至-60℃时,含水量为0.07 g H₂O/g dm的种子计算得到的弛豫时间减少了约八个数量级,这与在类似温度范围内储存的种子和花粉所报道的老化动力学变化幅度相当。考兹曼温度(T(K))通常被认为是玻璃态分子流动性实际上为零的点,计算结果为-42℃。计算得到的弛豫时间、低于VTF动力学预期的温度系数以及比Tg低70℃的T(K)表明,在低温下存在分子流动性,尽管有限。

相似文献

2
Longevity of cryogenically stored seeds.低温保存种子的寿命
Cryobiology. 2004 Jun;48(3):229-44. doi: 10.1016/j.cryobiol.2004.01.007.

引用本文的文献

5
Longevity of preserved L. seeds: physicochemical characteristics.保存的L.种子的寿命:理化特性。
Physiol Mol Biol Plants. 2022 Feb;28(2):505-516. doi: 10.1007/s12298-022-01157-9. Epub 2022 Mar 12.
6
Principles of Ice-Free Cryopreservation by Vitrification.玻璃化冷冻无冰保存原则。
Methods Mol Biol. 2021;2180:27-97. doi: 10.1007/978-1-0716-0783-1_2.

本文引用的文献

1
Calorimetric studies of the state of water in seed tissues.水在种子组织中状态的量热研究。
Biophys J. 1990 Dec;58(6):1463-71. doi: 10.1016/S0006-3495(90)82491-7.
2
Physical aging in polymer glasses.聚合物玻璃中的物理老化。
Science. 1995 Mar 31;267(5206):1945-7. doi: 10.1126/science.267.5206.1945.
3
Theoretical basis of protocols for seed storage.种子储存方案的理论基础。
Plant Physiol. 1990 Nov;94(3):1019-23. doi: 10.1104/pp.94.3.1019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验