Golantsova Nina E, Gorbunova Elena E, Mackow Erich R
Department of Medicine, Stony Brook University, Stony Brook, New York 11794, USA.
J Virol. 2004 Feb;78(4):2037-44. doi: 10.1128/jvi.78.4.2037-2044.2004.
Cleavage of the rotavirus spike protein, VP4, is required for rotavirus-induced membrane permeability and viral entry into cells. The VP5* cleavage product selectively permeabilizes membranes and liposomes and contains an internal hydrophobic domain that is required for membrane permeability. Here we investigate VP5* domains (residues 248 to 474) that direct membrane binding. We determined that expressed VP5 fragments containing residues 248 to 474 or 265 to 474, including the internal hydrophobic domain, bind to cellular membranes but are not present in Triton X-100-resistant membrane rafts. Expressed VP5 partitions into aqueous but not detergent phases of Triton X-114, suggesting that VP5 is not integrally inserted into membranes. Since high-salt or alkaline conditions eluted VP5 from membranes, our findings demonstrate that VP5 is peripherally associated with membranes. Interestingly, mutagenesis of residue 394 (W-->R) within the VP5 hydrophobic domain, which abolishes VP5-directed permeability, had no effect on VP5's peripheral membrane association. In contrast, deletion of N-terminal VP5 residues (residues 265 to 279) abolished VP5 binding to membranes. Alanine mutagenesis of two positively charged residues within this domain (residues 274R and 276K) dramatically reduced (>95%) binding of VP5 to membranes and suggested their potential interaction with polar head groups of the lipid bilayer. Mutations in either the VP5 hydrophobic or basic domain blocked VP5-directed permeability of cells. These findings indicate that there are at least two discrete domains within VP5* required for pore formation: an N-terminal basic domain that permits VP5* to peripherally associate with membranes and an internal hydrophobic domain that is essential for altering membrane permeability. These results provide a fundamental understanding of interactions between VP5* and the membrane, which are required for rotavirus entry.
轮状病毒诱导的膜通透性及病毒进入细胞需要轮状病毒刺突蛋白VP4的切割。VP5切割产物可选择性地使膜和脂质体通透,且含有一个膜通透性所需的内部疏水结构域。在此,我们研究了指导膜结合的VP5结构域(第248至474位氨基酸残基)。我们确定,表达的包含第248至474位或第265至474位氨基酸残基(包括内部疏水结构域)的VP5片段可结合细胞膜,但不存在于抗Triton X-100的膜筏中。表达的VP5分配到Triton X-114的水相而非去污剂相中,这表明VP5并非完整插入膜中。由于高盐或碱性条件可将VP5从膜上洗脱,我们的研究结果表明VP5与膜是外周性结合。有趣的是,VP5疏水结构域内第394位氨基酸残基(W→R)的诱变消除了VP5介导的通透性,但对VP5与膜的外周结合没有影响。相反,缺失VP5的N端氨基酸残基(第265至279位氨基酸残基)则消除了VP5与膜的结合。对该结构域内两个带正电荷的氨基酸残基(第274位R和第276位K)进行丙氨酸诱变,显著降低了(>95%)VP5与膜的结合,并提示它们可能与脂质双层的极性头部基团相互作用。VP5疏水或碱性结构域的突变均阻断了VP5介导的细胞通透性。这些发现表明,VP5形成孔道至少需要两个离散的结构域:一个N端碱性结构域,它使VP5能够与膜外周结合;一个内部疏水结构域,它对于改变膜通透性至关重要。这些结果为理解VP5*与膜之间的相互作用提供了基础,而这种相互作用是轮状病毒进入细胞所必需的。