Suppr超能文献

腺病毒蛋白 VI 的 N 端结构域通过诱导正膜曲率来破坏膜。

An N-terminal domain of adenovirus protein VI fragments membranes by inducing positive membrane curvature.

机构信息

Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA.

出版信息

Virology. 2010 Jun 20;402(1):11-9. doi: 10.1016/j.virol.2010.03.043. Epub 2010 Apr 20.

Abstract

Adenovirus (Ad) membrane penetration during cell entry is poorly understood. Here we show that antibodies which neutralize the membrane lytic activity of the Ad capsid protein VI interfere with Ad endosomal membrane penetration. In vitro studies using a peptide corresponding to an N-terminal amphipathic alpha-helix of protein VI (VI-Phi), as well as other truncated forms of protein VI suggest that VI-Phi is largely responsible for protein VI binding to and lysing of membranes. Additional studies suggest that VI-Phi lies nearly parallel to the membrane surface. Protein VI fragments membranes and induces highly curved structures. Further studies suggest that protein VI induces positive membrane curvature. These data support a model in which protein VI binds membranes, inducing positive curvature strain which ultimately leads to membrane fragmentation. These results agree with previous observations of Ad membrane permeabilization during cell entry and provide an initial mechanistic description of a nonenveloped virus membrane lytic protein.

摘要

腺病毒(Ad)在细胞进入过程中的膜穿透机制尚不清楚。在这里,我们发现中和腺病毒衣壳蛋白 VI 的膜溶解活性的抗体干扰了 Ad 内体膜穿透。使用与蛋白 VI 的 N 端两性α螺旋(VI-Phi)相对应的肽以及其他截断形式的蛋白 VI 的体外研究表明,VI-Phi 在很大程度上负责蛋白 VI 与膜的结合和裂解。其他研究表明,VI-Phi 几乎与膜表面平行。蛋白 VI 裂解膜并诱导高度弯曲的结构。进一步的研究表明,蛋白 VI 诱导正膜曲率。这些数据支持这样一种模型,即蛋白 VI 结合膜,诱导正曲率应变,最终导致膜碎裂。这些结果与在细胞进入过程中观察到的 Ad 膜通透性一致,并为无包膜病毒膜溶解蛋白提供了初步的机制描述。

相似文献

1
An N-terminal domain of adenovirus protein VI fragments membranes by inducing positive membrane curvature.
Virology. 2010 Jun 20;402(1):11-9. doi: 10.1016/j.virol.2010.03.043. Epub 2010 Apr 20.
2
N-terminal α-helix-independent membrane interactions facilitate adenovirus protein VI induction of membrane tubule formation.
Virology. 2010 Dec 5;408(1):31-8. doi: 10.1016/j.virol.2010.08.033. Epub 2010 Sep 25.
3
Adenovirus protein VI mediates membrane disruption following capsid disassembly.
J Virol. 2005 Feb;79(4):1992-2000. doi: 10.1128/JVI.79.4.1992-2000.2005.
4
The amphipathic helix of adenovirus capsid protein VI contributes to penton release and postentry sorting.
J Virol. 2015 Feb;89(4):2121-35. doi: 10.1128/JVI.02257-14. Epub 2014 Dec 3.
5
Disulfide-bond formation by a single cysteine mutation in adenovirus protein VI impairs capsid release and membrane lysis.
Virology. 2012 Jun 20;428(1):41-7. doi: 10.1016/j.virol.2012.03.024. Epub 2012 Apr 17.
6
Dissecting the functional domains of a nonenveloped virus membrane penetration peptide.
J Virol. 2009 Jul;83(13):6929-33. doi: 10.1128/JVI.02299-08. Epub 2009 Apr 15.
7
A Single Maturation Cleavage Site in Adenovirus Impacts Cell Entry and Capsid Assembly.
J Virol. 2015 Oct 21;90(1):521-32. doi: 10.1128/JVI.02014-15. Print 2016 Jan 1.
8
Co-option of Membrane Wounding Enables Virus Penetration into Cells.
Cell Host Microbe. 2015 Jul 8;18(1):75-85. doi: 10.1016/j.chom.2015.06.006.
10
Functional genetic and biophysical analyses of membrane disruption by human adenovirus.
J Virol. 2011 Mar;85(6):2631-41. doi: 10.1128/JVI.02321-10. Epub 2011 Jan 5.

引用本文的文献

1
Complex regulation of mitochondrial signaling by human adenovirus minor capsid protein VI.
J Virol. 2024 Jul 23;98(7):e0035624. doi: 10.1128/jvi.00356-24. Epub 2024 Jun 5.
2
The Functionality of Membrane-Inserting Proteins and Peptides: Curvature Sensing, Generation, and Pore Formation.
J Membr Biol. 2023 Dec;256(4-6):343-372. doi: 10.1007/s00232-023-00289-7. Epub 2023 Aug 31.
3
De novo design of monomeric helical bundles for pH-controlled membrane lysis.
Protein Sci. 2023 Nov;32(11):e4769. doi: 10.1002/pro.4769.
4
Autophagy induced by human adenovirus B7 structural protein VI inhibits viral replication.
Virol Sin. 2023 Oct;38(5):709-722. doi: 10.1016/j.virs.2023.08.002. Epub 2023 Aug 5.
5
Near-atomic architecture of Singapore grouper iridovirus and implications for giant virus assembly.
Nat Commun. 2023 Apr 12;14(1):2050. doi: 10.1038/s41467-023-37681-9.
6
Reovirus infection is regulated by NPC1 and endosomal cholesterol homeostasis.
PLoS Pathog. 2022 Mar 9;18(3):e1010322. doi: 10.1371/journal.ppat.1010322. eCollection 2022 Mar.
7
How Do Biomolecules Cross the Cell Membrane?
Acc Chem Res. 2022 Feb 1;55(3):309-318. doi: 10.1021/acs.accounts.1c00560. Epub 2022 Jan 11.
8
Functional roles of the membrane-associated AAV protein MAAP.
Sci Rep. 2021 Nov 4;11(1):21698. doi: 10.1038/s41598-021-01220-7.

本文引用的文献

1
A capsid-encoded PPxY-motif facilitates adenovirus entry.
PLoS Pathog. 2010 Mar 19;6(3):e1000808. doi: 10.1371/journal.ppat.1000808.
4
Dissecting the functional domains of a nonenveloped virus membrane penetration peptide.
J Virol. 2009 Jul;83(13):6929-33. doi: 10.1128/JVI.02299-08. Epub 2009 Apr 15.
5
Independent regulation of reovirus membrane penetration and apoptosis by the mu1 phi domain.
PLoS Pathog. 2008 Dec;4(12):e1000248. doi: 10.1371/journal.ppat.1000248. Epub 2008 Dec 26.
6
Key role of splenic myeloid DCs in the IFN-alphabeta response to adenoviruses in vivo.
PLoS Pathog. 2008 Nov;4(11):e1000208. doi: 10.1371/journal.ppat.1000208. Epub 2008 Nov 14.
8
Peptides released from reovirus outer capsid form membrane pores that recruit virus particles.
EMBO J. 2008 Apr 23;27(8):1289-98. doi: 10.1038/emboj.2008.60. Epub 2008 Mar 27.
9
Mechanism of adenovirus neutralization by Human alpha-defensins.
Cell Host Microbe. 2008 Jan 17;3(1):11-9. doi: 10.1016/j.chom.2007.12.001.
10
Adenovirus vectors composed of subgroup B adenoviruses.
Curr Gene Ther. 2007 Aug;7(4):229-38. doi: 10.2174/156652307781369137.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验