Suppr超能文献

Prostaglandins protect kidneys against ischemic and toxic injury by a cellular effect.

作者信息

Paller M S, Manivel J C

机构信息

Department of Medicine, University of Minnesota, Minneapolis.

出版信息

Kidney Int. 1992 Dec;42(6):1345-54. doi: 10.1038/ki.1992.426.

Abstract

The ability of prostaglandins to protect the kidney against ischemic and toxic renal injury was evaluated by in vivo and in vitro models of renal ischemia. The prostaglandin E1 analogue, misoprostol, was found to provide significant protection against ischemia-induced renal dysfunction in rats subjected to 40 minutes of renal artery occlusion. Misoprostol-treated rats had glomerular filtration rates almost threefold greater than control animals, although renal blood flow and renal vascular resistance were not significantly different. Improved tubular function was reflected in a lower fractional excretion of sodium and a higher urine-to-plasma creatinine ratio. Misoprostol also provided similar protection in a model of toxic renal injury produced by mercuric chloride. In an in vitro model employing primary cultures of proximal tubule epithelial cells subjected to hypoxia and reoxygenation, misoprostol limited cell death. Posthypoxic cells had apical membrane disruption and loss of microvilli when examined by transmission electron microscopy. These changes were not seen in misoprostol-treated cells. The "cytoprotective" effect was also produced by prostaglandin E2 and prostacyclin. The ability of prostaglandin E to protect against toxic and ischemic renal injury did not appear to be due to an antioxidant effect because misoprostol did not limit lipid peroxidation in vivo and did not protect against oxidant injury by tert-butyl hydroperoxide in vitro. Although the exact mechanism of prostaglandin protection was not revealed, these studies demonstrate that prostaglandins protect renal tubule epithelial cells from hypoxic injury at the cellular level independent of hemodynamic factors or inflammatory responses. Such a "cytoprotective" effect of prostaglandins may be a generalized phenomenon since it has also been demonstrated in gastrointestinal epithelium.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验