Suppr超能文献

用于预测蛋白质结构可变区的片段过滤和排序的有效方法。

Efficient methods for filtering and ranking fragments for the prediction of structurally variable regions in proteins.

作者信息

Heuser Philipp, Wohlfahrt Gerd, Schomburg Dietmar

机构信息

University of Cologne, Institute of Biochemistry, Köln, Germany.

出版信息

Proteins. 2004 Feb 15;54(3):583-95. doi: 10.1002/prot.10603.

Abstract

The prediction of protein 3D structures close to insertions and deletions or, more generally, loop prediction, is still one of the major challenges in homology modeling projects. In this article, we developed ranking criteria and selection filters to improve knowledge-based loop predictions. These criteria were developed and optimized for a test data set containing 678 insertions and deletions. The examples are, in principle, predictable from the used loop database with an RMSD < 1 A and represent realistic modeling situations. Four noncorrelated criteria for the selection of fragments are evaluated. A fast prefilter compares the distance between the anchor groups in the template protein with the stems of the fragments. The RMSD of the anchor groups is used for fitting and ranking of the selected loop candidates. After fitting, repulsive close contacts of loop candidates with the template protein are used for filtering, and fragments with backbone torsion angles, which are unfavorable according to a knowledge-based potential, are eliminated. By the combined application of these filter criteria to the test set, it was possible to increase the percentage of predictions with a global RMSD < 1 A to over 50% among the first five ranks, with average global RMSD values for the first rank candidate that are between 1.3 and 2.2 A for different loop lengths. Compared to other examples described in the literature, our large numbers of test cases are not self-predictions, where loops are placed in a protein after a peptide loop has been cut out, but are attempts to predict structural changes that occur in evolution when a protein is affected by insertions and deletions.

摘要

预测靠近插入和缺失处的蛋白质三维结构,或者更一般地说,环预测,仍然是同源建模项目中的主要挑战之一。在本文中,我们开发了排序标准和选择过滤器,以改进基于知识的环预测。这些标准是针对一个包含678个插入和缺失的测试数据集开发和优化的。原则上,这些例子可从使用的环数据库中以均方根偏差(RMSD)<1埃进行预测,并代表实际的建模情况。评估了用于选择片段的四个不相关标准。一个快速预过滤器将模板蛋白中锚定基团之间的距离与片段的茎进行比较。锚定基团的均方根偏差用于对所选环候选物进行拟合和排序。拟合后,利用环候选物与模板蛋白的排斥性紧密接触进行过滤,并根据基于知识的势消除具有不利主链扭转角的片段。通过将这些过滤标准组合应用于测试集,在前五个排名中,有可能将全局均方根偏差<1埃的预测百分比提高到50%以上,对于不同环长度,第一个排名候选物的平均全局均方根偏差值在1.3至2.2埃之间。与文献中描述的其他例子相比,我们大量的测试案例不是自我预测,即肽环被切除后将环放置在蛋白质中,而是试图预测蛋白质受插入和缺失影响时在进化过程中发生的结构变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验