Suppr超能文献

Development of a reconstitution system for Rinderpest virus RNA synthesis in vitro.

作者信息

Raha Tamal, Chattopadhyay Anasuya, Shaila M S

机构信息

Department of Microbiology and Cell Biology, Indian Institute of Science, 560 012, Bangalore, India.

出版信息

Virus Res. 2004 Feb;99(2):131-8. doi: 10.1016/j.virusres.2003.11.004.

Abstract

The RNA dependent RNA polymerase of Rinderpest virus consists of two subunits-the large protein (L) and the phosphoprotein (P), where L is thought to be responsible for the catalytic activities in association with P protein which plays multiple roles in transcription and replication. The nucleocapsid protein (N) is necessary for encapsidation of genomic RNA, which is required as N-P complex. To understand the different steps of transcription and replication as well as the roles played by the three proteins, an in vitro reconstitution system for RNA synthesis is necessary which is not available for any morbillivirus. We describe here, an in vitro reconstitution system for transcription and replication of Rinderpest virus utilizing a synthetic, positive sense N-RNA minigenome template, free of endogenous viral polymerase proteins and recombinant viral proteins (P+L and P+N) expressed in insect cells by recombinant baculoviruses. We show that although L-P complex is sufficient to synthesize negative sense minigenome RNA, soluble N protein is necessary for encapsidation of RNA as well as synthesis of (+) sense leader RNA and (+) sense minigenome RNA.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验