Suppr超能文献

基于知识的代谢预测与液相色谱数据依赖串联质谱联用在药物代谢研究中的应用:应用于茚地那韦生物转化的研究

Integration of knowledge-based metabolic predictions with liquid chromatography data-dependent tandem mass spectrometry for drug metabolism studies: application to studies on the biotransformation of indinavir.

作者信息

Anari M Reza, Sanchez Rosa I, Bakhtiar Ray, Franklin Ronald B, Baillie Thomas A

机构信息

Department of Drug Metabolism, Merck Research Laboratories, WP75A-203, Sumneytown Pike, West Point, PA 19486, USA.

出版信息

Anal Chem. 2004 Feb 1;76(3):823-32. doi: 10.1021/ac034980s.

Abstract

Despite recent advances in the application of data-dependent liquid chromatography/tandem mass spectrometry (LC/MS/MS) to the identification of drug metabolites in complex biological matrixes, a prior knowledge of the likely routes of biotransformation of the therapeutic agent of interest greatly facilitates the detection and structural characterization of its metabolites. Thus, prediction of the [M + H]+ m/z values of expected metabolites allows for the construction of user-defined MS(n) protocols that frequently reveal the presence of minor drug metabolites, even in the presence of a vast excess of coeluting endogenous constituents. However, this approach suffers from inherent user bias, as a result of which additional "survey scans" (e.g., precursor ion and constant neutral loss scans) are required to ensure detection of as many drug-related components in the sample as possible. In the present study, a novel approach to this problem has been evaluated, in which knowledge-based predictions of metabolic pathways are first derived from a commercial database, the output from which is used to formulate a list-dependent LC/MS(n) data acquisition protocol. Using indinavir as a model drug, a substructure similarity search on the MDL metabolism database with a similarity index of 60% yielded 188 "hits", pointing to the possible operation of two hydrolytic, two N-dealkylation, three N-glucuronidation, one N-methylation, and several aromatic and aliphatic oxidation pathways. Integration of this information with data-dependent LC/MS(n) analysis using an ion trap mass spectrometer led to the identification of 18 metabolites of indinavir following incubation of the drug with human hepatic postmitochondrial preparations. This result was accomplished with only a single LC/MS(n) run, representing significant savings in instrument use and operator time, and afforded an accurate view of the complex in vitro metabolic profile of this drug.

摘要

尽管在将数据依赖型液相色谱/串联质谱法(LC/MS/MS)应用于复杂生物基质中药物代谢物鉴定方面取得了最新进展,但事先了解目标治疗药物可能的生物转化途径,将极大地有助于其代谢物的检测和结构表征。因此,预测预期代谢物的[M + H]+ m/z值有助于构建用户定义的MS(n)方案,即使在存在大量共洗脱内源性成分的情况下,该方案也常常能揭示次要药物代谢物的存在。然而,这种方法存在固有的用户偏差,因此需要额外的“普查扫描”(例如,前体离子扫描和恒定中性丢失扫描),以确保检测到样品中尽可能多的与药物相关的成分。在本研究中,对解决这一问题的一种新方法进行了评估,其中首先从商业数据库中得出基于知识的代谢途径预测,其输出结果用于制定基于列表的LC/MS(n)数据采集方案。以茚地那韦作为模型药物,在MDL代谢数据库上进行相似度指数为60%的子结构相似性搜索,得到188个“命中结果”,表明可能存在两条水解途径、两条N-脱烷基化途径、三条N-葡萄糖醛酸化途径、一条N-甲基化途径以及若干芳香族和脂肪族氧化途径。将这些信息与使用离子阱质谱仪进行的数据依赖型LC/MS(n)分析相结合,在将该药物与人肝线粒体后制备物孵育后,鉴定出了茚地那韦的18种代谢物。这一结果仅通过一次LC/MS(n)运行就得以实现,在仪器使用和操作人员时间方面实现了显著节省,并提供了该药物复杂体外代谢谱的准确视图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验