Suppr超能文献

有限温度下的网络刚性:分子系统中热力学稳定性、熵的非加和性与协同性之间的关系。

Network rigidity at finite temperature: relationships between thermodynamic stability, the nonadditivity of entropy, and cooperativity in molecular systems.

作者信息

Jacobs Donald J, Dallakyan S, Wood G G, Heckathorne A

机构信息

Physics and Astronomy Department, California State University, Northridge, California 91330, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec;68(6 Pt 1):061109. doi: 10.1103/PhysRevE.68.061109. Epub 2003 Dec 31.

Abstract

A statistical mechanical distance constraint model (DCM) is presented that explicitly accounts for network rigidity among constraints present within a system. Constraints are characterized by local microscopic free-energy functions. Topological rearrangements of thermally fluctuating constraints are permitted. The partition function is obtained by combining microscopic free energies of individual constraints using network rigidity as an underlying long-range mechanical interaction, giving a quantitative explanation for the nonadditivity in component entropies exhibited in molecular systems. Two exactly solved two-dimensional toy models representing flexible molecules that can undergo conformational change are presented to elucidate concepts, and to outline a DCM calculation scheme applicable to many types of physical systems. It is proposed that network rigidity plays a central role in balancing the energetic and entropic contributions to the free energy of biopolymers, such as proteins. As a demonstration, the distance constraint model is solved exactly for the alpha-helix to coil transition in homogeneous peptides. Temperature and size independent model parameters are fitted to Monte Carlo simulation data, which includes peptides of length 10 for gas phase, and lengths 10, 15, 20, and 30 in water. The DCM is compared to the Lifson-Roig model. It is found that network rigidity provides a mechanism for cooperativity in molecular structures including their ability to spontaneously self-organize. In particular, the formation of a characteristic topological arrangement of constraints is associated with the most probable microstates changing under different thermodynamic conditions.

摘要

提出了一种统计力学距离约束模型(DCM),该模型明确考虑了系统内存在的约束之间的网络刚性。约束由局部微观自由能函数表征。允许热涨落约束的拓扑重排。通过将各个约束的微观自由能结合起来,以网络刚性作为潜在的长程力学相互作用来获得配分函数,从而对分子系统中组分熵的非加和性给出定量解释。给出了两个精确求解的二维玩具模型,它们代表了可以发生构象变化的柔性分子,以阐明概念,并概述适用于多种物理系统的DCM计算方案。有人提出,网络刚性在平衡对生物聚合物(如蛋白质)自由能的能量和熵贡献方面起着核心作用。作为一个例证,对均匀肽段中α-螺旋到卷曲的转变精确求解了距离约束模型。将与温度和尺寸无关的模型参数拟合到蒙特卡罗模拟数据,这些数据包括气相中长度为10的肽段以及水中长度为10、15、20和30的肽段。将DCM与利夫森-罗伊格模型进行了比较。发现网络刚性为分子结构中的协同性提供了一种机制,包括它们自发自组装的能力。特别是,约束的特征拓扑排列的形成与在不同热力学条件下最可能的微观状态变化相关。

相似文献

1
Network rigidity at finite temperature: relationships between thermodynamic stability, the nonadditivity of entropy, and cooperativity in molecular systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec;68(6 Pt 1):061109. doi: 10.1103/PhysRevE.68.061109. Epub 2003 Dec 31.
3
Nonadditivity in the alpha-helix to coil transition.
Biopolymers. 2011 Apr;95(4):240-53. doi: 10.1002/bip.21572. Epub 2010 Dec 23.
4
Elucidating protein thermodynamics from the three-dimensional structure of the native state using network rigidity.
Biophys J. 2005 Feb;88(2):903-15. doi: 10.1529/biophysj.104.048496. Epub 2004 Nov 12.
5
A flexible approach for understanding protein stability.
FEBS Lett. 2004 Oct 22;576(3):468-76. doi: 10.1016/j.febslet.2004.09.057.
8
Exactly solvable model for helix-coil-sheet transitions in protein systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 1):061919. doi: 10.1103/PhysRevE.81.061919. Epub 2010 Jun 17.
9
Helix/coil nucleation: a local response to global demands.
Biophys J. 2009 Dec 2;97(11):3000-9. doi: 10.1016/j.bpj.2009.09.013.
10
Microcanonical entropy inflection points: key to systematic understanding of transitions in finite systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011127. doi: 10.1103/PhysRevE.84.011127. Epub 2011 Jul 18.

引用本文的文献

1
Protein Function Analysis through Machine Learning.
Biomolecules. 2022 Sep 6;12(9):1246. doi: 10.3390/biom12091246.
2
Mutations in Antibody Fragments Modulate Allosteric Response Via Hydrogen-Bond Network Fluctuations.
Biophys J. 2016 May 10;110(9):1933-42. doi: 10.1016/j.bpj.2016.03.033.
3
Application of Rigidity Theory to the Thermostabilization of Lipase A from Bacillus subtilis.
PLoS Comput Biol. 2016 Mar 22;12(3):e1004754. doi: 10.1371/journal.pcbi.1004754. eCollection 2016 Mar.
4
Novel Ricin Subunit Antigens With Enhanced Capacity to Elicit Toxin-Neutralizing Antibody Responses in Mice.
J Pharm Sci. 2016 May;105(5):1603-1613. doi: 10.1016/j.xphs.2016.02.009. Epub 2016 Mar 15.
5
Flexibility Correlation between Active Site Regions Is Conserved across Four AmpC β-Lactamase Enzymes.
PLoS One. 2015 May 27;10(5):e0125832. doi: 10.1371/journal.pone.0125832. eCollection 2015.
6
A virtual pebble game to ensemble average graph rigidity.
Algorithms Mol Biol. 2015 Mar 18;10:11. doi: 10.1186/s13015-015-0039-3. eCollection 2015.
9
Thermodynamic stability and flexibility characteristics of antibody fragment complexes.
Protein Pept Lett. 2014;21(8):752-65. doi: 10.2174/09298665113209990051.
10
Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review.
Pharmacol Ther. 2013 Jun;138(3):333-408. doi: 10.1016/j.pharmthera.2013.01.016. Epub 2013 Feb 4.

本文引用的文献

1
Stereochemistry of polypeptide chain configurations.
J Mol Biol. 1963 Jul;7:95-9. doi: 10.1016/s0022-2836(63)80023-6.
3
Structure validation by Calpha geometry: phi,psi and Cbeta deviation.
Proteins. 2003 Feb 15;50(3):437-50. doi: 10.1002/prot.10286.
4
Recent advances in helix-coil theory.
Biophys Chem. 2002 Dec 10;101-102:281-93. doi: 10.1016/s0301-4622(02)00170-9.
5
Helix-coil transitions re-visited.
Biophys Chem. 2002 Dec 10;101-102:255-65. doi: 10.1016/s0301-4622(02)00175-8.
6
Identifying protein folding cores from the evolution of flexible regions during unfolding.
J Mol Graph Model. 2002 Dec;21(3):195-207. doi: 10.1016/s1093-3263(02)00146-8.
7
Protein unfolding: rigidity lost.
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3540-5. doi: 10.1073/pnas.062492699. Epub 2002 Mar 12.
8
Protein flexibility predictions using graph theory.
Proteins. 2001 Aug 1;44(2):150-65. doi: 10.1002/prot.1081.
9
Hydrogen-bond disruption probability in proteins by a modified self-consistent harmonic approach.
Biopolymers. 2001 Mar;58(3):319-28. doi: 10.1002/1097-0282(200103)58:3<319::AID-BIP1008>3.0.CO;2-9.
10
Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering.
Prog Biophys Mol Biol. 2000;74(1-2):63-91. doi: 10.1016/s0079-6107(00)00017-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验