Suppr超能文献

利用脂肪酸分析作为化学分类学工具对发菜及其近缘物种进行鉴别

Differentiation of Nostoc flagelliforme and its neighboring species using fatty-acid profiling as a chemotaxonomic tool.

作者信息

Liu Xue-Jun, Chen Feng, Jiang Yue

机构信息

Department of Botany, University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.

出版信息

Curr Microbiol. 2003 Dec;47(6):467-74. doi: 10.1007/s00284-003-4059-8.

Abstract

In this study, fatty-acid content and patterns were analyzed in order to distinguish Nostoc flagelliforme, an edible terrestrial cyanobacterium, from other Nostoc species and representatives typical of its close neighbors (genera Anabaena, Microcystis, and Synechococcus). According to the Kenyon-Murata classification system, all the Nostoc species were assigned to Group II due to the presence of C18:2n3 and C18:3n3, and the absence of C18:3n6. Hierarchical cluster analysis was also employed to separate N. flagelliforme and other Nostoc species or strains. A dendrogram calculation of all fatty-acid components manifested phenetic characteristics, showing that the degree of relatedness of two strains of N. flagelliforme aggregated them within a small subgroup. Another dendrogram, calculated from seven comprehensive parameters (including ratios of different fatty-acid categories, degree of fatty-acid unsaturation, etc.), also clearly delimited the minute difference in fatty-acid profiles between the tested organisms. Our results suggest that profiling fatty acids could be a useful approach in the taxonomic or phylogenetic study of the genus Nostoc and might serve as a valuable supplement to the current morphology-based classification system.

摘要

在本研究中,分析了脂肪酸含量和模式,以便将可食用陆生蓝细菌发菜与其他念珠藻属物种及其近邻(鱼腥藻属、微囊藻属和聚球藻属)的典型代表区分开来。根据Kenyon-Murata分类系统,由于存在C18:2n3和C18:3n3且不存在C18:3n6,所有念珠藻属物种都被归入第二类。还采用了层次聚类分析来区分发菜与其他念珠藻属物种或菌株。对所有脂肪酸成分进行的树状图计算显示了表型特征,表明两株发菜的亲缘关系程度使它们聚集在一个小亚组内。根据七个综合参数(包括不同脂肪酸类别的比例、脂肪酸不饱和度等)计算的另一个树状图也清楚地界定了受试生物之间脂肪酸谱的细微差异。我们的结果表明,脂肪酸谱分析可能是念珠藻属分类学或系统发育研究中的一种有用方法,并且可能作为当前基于形态学的分类系统的有价值补充。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验