文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

周期性干燥过程中小分子代谢物在 中的分析。

Profiling of Small Molecular Metabolites in during Periodic Desiccation.

机构信息

School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.

School of Life Sciences, Central China Normal University, Wuhan 430079, China.

出版信息

Mar Drugs. 2019 May 18;17(5):298. doi: 10.3390/md17050298.


DOI:10.3390/md17050298
PMID:31109094
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6562405/
Abstract

The mass spectrometry-based metabolomics approach has become a powerful tool for the quantitative analysis of small-molecule metabolites in biological samples. , an edible cyanobacterium with herbal value, serves as an unexploited bioresource for small molecules. In natural environments, undergoes repeated cycles of rehydration and dehydration, which are interrupted by either long- or short-term dormancy. In this study, we performed an untargeted metabolite profiling of samples at three physiological states: Dormant (S1), physiologically fully recovered after rehydration (S2), and physiologically partially inhibited following dehydration (S3). Significant metabolome differences were identified based on the OPLS-DA (orthogonal projections to latent structures discriminant analysis) model. In total, 183 differential metabolites (95 up-regulated; 88 down-regulated) were found during the rehydration process (S2 vs. S1), and 130 (seven up-regulated; 123 down-regulated) during the dehydration process (S3 vs. S2). Thus, it seemed that the metabolites' biosynthesis mainly took place in the rehydration process while the degradation or possible conversion occurred in the dehydration process. In addition, lipid profile differences were particularly prominent, implying profound membrane phase changes during the rehydration-dehydration cycle. In general, this study expands our understanding of the metabolite dynamics in and provides biotechnological clues for achieving the efficient production of those metabolites with medical potential.

摘要

基于质谱的代谢组学方法已成为定量分析生物样品中小分子代谢物的有力工具。螺旋藻是一种具有草药价值的可食用蓝藻,是小分子的未开发生物资源。在自然环境中,螺旋藻经历了反复的水合和脱水循环,这些循环被长期或短期休眠所打断。在这项研究中,我们对处于三种生理状态下的螺旋藻样本进行了非靶向代谢组学分析:休眠(S1)、水合后生理上完全恢复(S2)和脱水后生理上部分抑制(S3)。基于 OPLS-DA(正交偏最小二乘判别分析)模型,我们鉴定出了显著的代谢组差异。在水合过程中(S2 与 S1 相比),共发现 183 种差异代谢物(95 种上调;88 种下调),在脱水过程中(S3 与 S2 相比),共发现 130 种差异代谢物(7 种上调;123 种下调)。因此,似乎代谢物的生物合成主要发生在水合过程中,而降解或可能的转化则发生在脱水过程中。此外,脂质谱差异尤为显著,表明在水合-脱水循环过程中膜相发生了深刻变化。总的来说,这项研究扩展了我们对螺旋藻代谢物动态的理解,并为实现具有医学潜力的这些代谢物的高效生产提供了生物技术线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/6562405/99d4ebedd883/marinedrugs-17-00298-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/6562405/5cadd629ee3f/marinedrugs-17-00298-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/6562405/89b6c5a2be95/marinedrugs-17-00298-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/6562405/7b46cbe0dd26/marinedrugs-17-00298-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/6562405/e4e7d30be2f3/marinedrugs-17-00298-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/6562405/ac040dca7eef/marinedrugs-17-00298-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/6562405/99d4ebedd883/marinedrugs-17-00298-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/6562405/5cadd629ee3f/marinedrugs-17-00298-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/6562405/89b6c5a2be95/marinedrugs-17-00298-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/6562405/7b46cbe0dd26/marinedrugs-17-00298-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/6562405/e4e7d30be2f3/marinedrugs-17-00298-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/6562405/ac040dca7eef/marinedrugs-17-00298-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/6562405/99d4ebedd883/marinedrugs-17-00298-g006.jpg

相似文献

[1]
Profiling of Small Molecular Metabolites in during Periodic Desiccation.

Mar Drugs. 2019-5-18

[2]
Investigation of the dynamical expression of Nostoc flagelliforme proteome in response to rehydration.

J Proteomics. 2018-9-4

[3]
The odd behaviour of carbonic anhydrase in the terrestrial cyanobacterium Nostoc flagelliforme during hydration-dehydration cycles.

Environ Microbiol. 2008-4

[4]
Ultrastructural, physiological and proteomic analysis of Nostoc flagelliforme in response to dehydration and rehydration.

J Proteomics. 2012-8-3

[5]
Orange and red carotenoid proteins are involved in the adaptation of the terrestrial cyanobacterium Nostoc flagelliforme to desiccation.

Photosynth Res. 2019-3-2

[6]
Weak red light plays an important role in awakening the photosynthetic machinery following desiccation in the subaerial cyanobacterium Nostoc flagelliforme.

Environ Microbiol. 2019-4-7

[7]
Coevolution of tandemly repeated and RpaB-like transcriptional factor confers desiccation tolerance to subaerial species.

Proc Natl Acad Sci U S A. 2022-10-18

[8]
Metabolomic approach to optimizing and evaluating antibiotic treatment in the axenic culture of cyanobacterium Nostoc flagelliforme.

World J Microbiol Biotechnol. 2014-9

[9]
Effects of UV-B radiation and periodic desiccation on the morphogenesis of the edible terrestrial cyanobacterium Nostoc flagelliforme.

Appl Environ Microbiol. 2012-8-3

[10]
Enhancement of exopolysaccharides production and reactive oxygen species level of Nostoc flagelliforme in response to dehydration.

Environ Sci Pollut Res Int. 2021-7

引用本文的文献

[1]
Molecular Mechanisms of Environmental Adaptation: A Comprehensive Review.

Plants (Basel). 2025-5-22

[2]
The Enzyme Lysine Malonylation of Calvin Cycle and Gluconeogenesis Regulated Glycometabolism in to Adapt to Drought Stress.

Int J Mol Sci. 2023-5-8

[3]
Cytotoxicity and H NMR metabolomics analyses of microalgal extracts for synergistic application with Tamoxifen on breast cancer cells with reduced toxicity against Vero cells.

Heliyon. 2022-3-26

[4]
Effect of Drought Stress on Degradation and Remodeling of Membrane Lipids in .

Foods. 2022-6-18

本文引用的文献

[1]
Transcriptome reprogramming during severe dehydration contributes to physiological and metabolic changes in the resurrection plant Haberlea rhodopensis.

BMC Plant Biol. 2018-12-13

[2]
Investigation of the dynamical expression of Nostoc flagelliforme proteome in response to rehydration.

J Proteomics. 2018-9-4

[3]
The drnf1 Gene from the Drought-Adapted Cyanobacterium Nostoc flagelliforme Improved Salt Tolerance in Transgenic Synechocystis and Arabidopsis Plant.

Genes (Basel). 2018-9-4

[4]
Comparative proteomic analysis of Cronobacter sakazakii by iTRAQ provides insights into response to desiccation.

Food Res Int. 2017-6-22

[5]
CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata.

Plant Mol Biol. 2017-9

[6]
Abiotic stresses as tools for metabolites in microalgae.

Bioresour Technol. 2017-5-15

[7]
Tiny Microbes with a Big Impact: The Role of Cyanobacteria and Their Metabolites in Shaping Our Future.

Mar Drugs. 2016-5-17

[8]
The resurrection genome of Boea hygrometrica: A blueprint for survival of dehydration.

Proc Natl Acad Sci U S A. 2015-5-5

[9]
MetaboAnalyst 3.0--making metabolomics more meaningful.

Nucleic Acids Res. 2015-7-1

[10]
Multiple roles of photosynthetic and sunscreen pigments in cyanobacteria focusing on the oxidative stress.

Metabolites. 2013-5-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索