Suppr超能文献

脑毛细血管内皮细胞和脉络丛上皮细胞调节转铁蛋白结合铁和游离铁进入大鼠脑内的转运。

Brain capillary endothelium and choroid plexus epithelium regulate transport of transferrin-bound and free iron into the rat brain.

作者信息

Deane Rashid, Zheng Wei, Zlokovic Berislav V

机构信息

Frank P. Smith Neurosurgical Research Laboratory, Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York 14642, USA.

出版信息

J Neurochem. 2004 Feb;88(4):813-20. doi: 10.1046/j.1471-4159.2003.02221.x.

Abstract

Iron transport into the CNS is still not completely understood. Using a brain perfusion technique in rats, we have shown a significant brain capillary uptake of circulating transferrin (Tf)-bound and free 59Fe (1 nm) at rates of 136 +/- 26 and 182 +/- 23 microL/g/min, respectively, while their respective transport rates into brain parenchyma were 1.68 +/- 0.56 and 1.52 +/- 0.48 microL/g/min. Regional Tf receptor density (Bmax) in brain endothelium determined with 125I-holo-Tf correlated well with 59Fe-Tf regional brain uptake rates reflecting significant vascular association of iron. Tf-bound and free circulating 59Fe were sequestered by the choroid plexus and transported into the CSF at low rates of 0.17 +/- 0.01 and 0.09 +/- 0.02 microL/min/g, respectively, consistent with a 10-fold brain-CSF concentration gradient for 59Fe, Tf-bound or free. We conclude that transport of circulating Tf-bound and free iron could be equally important for its delivery to the CNS. Moreover, data suggest that entry of Tf-bound and free iron into the CNS is determined by (i) its initial sequestration by brain capillaries and choroid plexus, and (ii) subsequent controlled and slow release from vascular structures into brain interstitial fluid and CSF.

摘要

铁进入中枢神经系统的过程仍未被完全理解。通过在大鼠中使用脑灌注技术,我们发现脑毛细血管对循环转铁蛋白(Tf)结合的和游离的59Fe(1纳米)有显著摄取,摄取速率分别为136±26和182±23微升/克/分钟,而它们进入脑实质的各自转运速率分别为1.68±0.56和1.52±0.48微升/克/分钟。用125I-全Tf测定的脑内皮细胞区域Tf受体密度(Bmax)与59Fe-Tf区域脑摄取速率密切相关,反映了铁与血管的显著关联。Tf结合的和游离的循环59Fe被脉络丛截留,并以低速率分别为0.17±0.01和0.09±0.02微升/分钟/克转运到脑脊液中,这与59Fe(Tf结合的或游离的)在脑与脑脊液之间10倍的浓度梯度一致。我们得出结论,循环中Tf结合的铁和游离铁的转运对其向中枢神经系统的输送可能同样重要。此外,数据表明,Tf结合的铁和游离铁进入中枢神经系统取决于:(i)其最初被脑毛细血管和脉络丛截留,以及(ii)随后从血管结构向脑间质液和脑脊液的受控缓慢释放。

相似文献

2
Brain iron homeostasis.
Dan Med Bull. 2002 Nov;49(4):279-301.
3
Kinetics and distribution of [59Fe-125I]transferrin injected into the ventricular system of the rat.
Brain Res. 1998 Apr 20;790(1-2):115-28. doi: 10.1016/s0006-8993(98)00055-9.
5
Evidence for low molecular weight, non-transferrin-bound iron in rat brain and cerebrospinal fluid.
J Neurosci Res. 1998 Nov 15;54(4):486-94. doi: 10.1002/(SICI)1097-4547(19981115)54:4<486::AID-JNR6>3.0.CO;2-I.
6
Iron and transferrin uptake by brain and cerebrospinal fluid in the rat.
Brain Res. 1992 Oct 2;592(1-2):8-16. doi: 10.1016/0006-8993(92)91652-u.
7
Transport of Non-Transferrin Bound Iron to the Brain: Implications for Alzheimer's Disease.
J Alzheimers Dis. 2017;58(4):1109-1119. doi: 10.3233/JAD-170097.
8
Transcytosis of GCSF-transferrin across rat alveolar epithelial cell monolayers.
Pharm Res. 2003 Aug;20(8):1231-8. doi: 10.1023/a:1025005232421.
9
Characterization of iron uptake from transferrin by murine endothelial cells.
Endothelium. 2000;7(2):135-47. doi: 10.3109/10623320009072208.
10
Transferrin is required for normal distribution of 59Fe and 54Mn in mouse brain.
J Neurol Sci. 1999 Nov 30;170(2):112-8. doi: 10.1016/s0022-510x(99)00203-8.

引用本文的文献

1
Lead Acetate Exposure and Cerebral Amyloid Accumulation: Mechanistic Evaluations in APP/PS1 Mice.
Environ Health Perspect. 2024 Oct;132(10):107004. doi: 10.1289/EHP14384. Epub 2024 Oct 16.
3
Brain Iron Metabolism, Redox Balance and Neurological Diseases.
Antioxidants (Basel). 2023 Jun 16;12(6):1289. doi: 10.3390/antiox12061289.
5
Molecular mechanisms of ferroptosis and the potential therapeutic targets of ferroptosis signaling pathways for glioblastoma.
Front Pharmacol. 2022 Nov 24;13:1071897. doi: 10.3389/fphar.2022.1071897. eCollection 2022.
6
Lactoferrin: from the structure to the functional orchestration of iron homeostasis.
Biometals. 2023 Jun;36(3):391-416. doi: 10.1007/s10534-022-00453-x. Epub 2022 Oct 10.
8
PCSK9 acts as a key regulator of Aβ clearance across the blood-brain barrier.
Cell Mol Life Sci. 2022 Mar 27;79(4):212. doi: 10.1007/s00018-022-04237-x.
9
Multimodal imaging of hemorrhagic transformation biomarkers in an ischemic stroke model.
Metallomics. 2022 Apr 30;14(4). doi: 10.1093/mtomcs/mfac007.
10
SARS-CoV-2: is there neuroinvasion?
Fluids Barriers CNS. 2021 Jul 14;18(1):32. doi: 10.1186/s12987-021-00267-y.

本文引用的文献

1
Pumping iron in the '90s.
Trends Cell Biol. 1996 Jun;6(6):223-8. doi: 10.1016/0962-8924(96)10019-2.
2
Iron misregulation in the brain: a primary cause of neurodegenerative disorders.
Lancet Neurol. 2003 Apr;2(4):246-53. doi: 10.1016/s1474-4422(03)00353-3.
4
Iron deficiency alters iron regulatory protein and iron transport protein expression in the perinatal rat brain.
Pediatr Res. 2003 May;53(5):800-7. doi: 10.1203/01.PDR.0000058922.67035.D5. Epub 2003 Mar 5.
5
Brain iron uptake and homeostatic mechanisms: an overview.
Biometals. 2003 Mar;16(1):63-75. doi: 10.1023/a:1020718718550.
7
Iron: a pathological mediator of Alzheimer disease?
Dev Neurosci. 2002;24(2-3):184-7. doi: 10.1159/000065696.
8
Drug and gene targeting to the brain with molecular Trojan horses.
Nat Rev Drug Discov. 2002 Feb;1(2):131-9. doi: 10.1038/nrd725.
10
Influence of iron-saturation of plasma transferrin in iron distribution in the brain.
Neurochem Int. 2002 Oct;41(4):223-8. doi: 10.1016/s0197-0186(02)00023-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验