Suppr超能文献

Mutagenicity of cadmium in mammalian cells: implication of oxidative DNA damage.

作者信息

Filipic Metka, Hei Tom K

机构信息

Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Vecna pot 111, 1000 Ljubljana, Slovenia.

出版信息

Mutat Res. 2004 Feb 26;546(1-2):81-91. doi: 10.1016/j.mrfmmm.2003.11.006.

Abstract

Cadmium and cadmium compounds are well established human carcinogens and are ubiquitously present in the environment. The carcinogenic mechanism(s) of cadmium remains largely unknown since direct mutagenic effect is weak in bacterial and in standard mammalian cell mutation assays. In this study, we show that when evaluated using the human-hamster hybrid A(L) cell mutation assay in which both intragenic and multilocus deletions can readily be detected, CdCl(2) is a strong mutagen that induces predominantly large deletion mutations. Concurrent treatment of A(L) cells with the oxyradical scavenger dimethyl sulfoxide significantly reduced the number of cadmium-induced mutations. In contrast, pre-treatment of cells with buthionine sulfoximine that depletes intracellular glutathione, increased cytotoxicity and mutagenicity of cadmium. These results demonstrate that reactive oxygen species mediate cadmium induced mutations in A(L) cells. With laser scanning confocal microscopy and the fluorescent probe 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, we demonstrated that cadmium induced a dose and time dependent formation of intracellular oxyradicals. Using immunoperoxidase staining coupled with a monoclonal antibody-specific for 8-OHdG adducts in DNA, we demonstrated that cadmium induced a dose dependent increase of 8-OHdG adducts, which accumulated with prolonged exposure. Furthermore, we showed that at low concentration, cadmium, attenuated removal of hydrogen peroxide induced 8-OHdG adducts. Thus, the carcinogenicity of cadmium can, in part, be explained by its mutagenic activity, which is mediated by reactive oxygen species induced DNA damage and by its interference with the repair of oxidative DNA damage.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验