Pagan-Rodriguez Doritza, Zhou Xiang, Simmons Reiko, Bethel Christopher R, Hujer Andrea M, Helfand Marion S, Jin Zhaoyan, Guo Baochuan, Anderson Vernon E, Ng Lily M, Bonomo Robert A
Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA.
J Biol Chem. 2004 May 7;279(19):19494-501. doi: 10.1074/jbc.M311669200. Epub 2004 Feb 2.
The increasing number of bacteria resistant to combinations of beta-lactam and beta-lactamase inhibitors is creating great difficulties in the treatment of serious hospital-acquired infections. Understanding the mechanisms and structural basis for the inactivation of these inhibitor-resistant beta-lactamases provides a rationale for the design of novel compounds. In the present work, SHV-1 and the Ser(130) --> Gly inhibitor-resistant variant of SHV-1 beta-lactamase were inactivated with tazobactam, a potent class A beta-lactamase inhibitor. Apoenzymes and inhibited beta-lactamases were analyzed by liquid chromatography-electrospray ionization mass spectrometry (LC-ESI/MS), digested with trypsin, and the products resolved using LC-ESI/MS and matrix-assisted laser desorption ionization-time of flight mass spectrometry. The mass increases observed for SHV-1 and Ser(130) --> Gly (+ Delta 88 Da and + Delta 70 Da, respectively) suggest that fragmentation of tazobactam readily occurs in the inhibitor-resistant variant to yield an inactive beta-lactamase. These two mass increments are consistent with the formation of an aldehyde (+ Delta 70 Da) and a hydrated aldehyde (+ Delta 88 Da) as stable products of inhibition. Our results reveal that the Ser --> Gly substitution at amino acid position 130 is not essential for enzyme inactivation. By examining the inhibitor-resistant Ser(130) --> Gly beta-lactamase, our data are the first to show that tazobactam undergoes fragmentation while still attached to the active site Ser(70) in this enzyme. After acylation of tazobactam by Ser(130) --> Gly, inactivation proceeds independent of any additional covalent interactions.
对β-内酰胺类和β-内酰胺酶抑制剂联合耐药的细菌数量不断增加,给严重医院获得性感染的治疗带来了巨大困难。了解这些耐药β-内酰胺酶失活的机制和结构基础,为新型化合物的设计提供了理论依据。在本研究中,用强效A类β-内酰胺酶抑制剂他唑巴坦使SHV-1及其SHV-1β-内酰胺酶的Ser(130)→Gly耐药变体失活。通过液相色谱-电喷雾电离质谱(LC-ESI/MS)分析脱辅基酶和被抑制的β-内酰胺酶,用胰蛋白酶消化,并用LC-ESI/MS和基质辅助激光解吸电离飞行时间质谱解析产物。在SHV-1和Ser(130)→Gly中观察到的质量增加(分别为+Δ88 Da和+Δ70 Da)表明,他唑巴坦在耐药变体中容易发生裂解,从而产生无活性的β-内酰胺酶。这两个质量增量与作为稳定抑制产物的醛(+Δ70 Da)和水合醛(+Δ88 Da)的形成一致。我们的结果表明,第130位氨基酸的Ser→Gly取代对于酶的失活并非必不可少。通过研究耐药的Ser(130)→Glyβ-内酰胺酶,我们的数据首次表明,他唑巴坦在该酶中仍与活性位点Ser(70)相连时就会发生裂解。在Ser(130)→Gly对他唑巴坦进行酰化后,失活过程独立于任何额外的共价相互作用进行。