Suppr超能文献

从协同进化动态耦合的图分析中得出的功能重要残基。

Functionally important residues from graph analysis of coevolved dynamic couplings.

作者信息

Xu Manming, Dantu Sarath Chandra, Garnett James A, Bonomo Robert A, Pandini Alessandro, Haider Shozeb

机构信息

UCL School of Pharmacy, London, United Kingdom.

Department of Computer Science, Brunel University London, Uxbridge, United Kingdom.

出版信息

Elife. 2025 Mar 28;14:RP105005. doi: 10.7554/eLife.105005.

Abstract

The relationship between protein dynamics and function is essential for understanding biological processes and developing effective therapeutics. Functional sites within proteins are critical for activities such as substrate binding, catalysis, and structural changes. Existing computational methods for the predictions of functional residues are trained on sequence, structural, and experimental data, but they do not explicitly model the influence of evolution on protein dynamics. This overlooked contribution is essential as it is known that evolution can fine-tune protein dynamics through compensatory mutations either to improve the proteins' performance or diversify its function while maintaining the same structural scaffold. To model this critical contribution, we introduce DyNoPy, a computational method that combines residue coevolution analysis with molecular dynamics simulations, revealing hidden correlations between functional sites. DyNoPy constructs a graph model of residue-residue interactions, identifies communities of key residue groups, and annotates critical sites based on their roles. By leveraging the concept of coevolved dynamical couplings-residue pairs with critical dynamical interactions that have been preserved during evolution-DyNoPy offers a powerful method for predicting and analysing protein evolution and dynamics. We demonstrate the effectiveness of DyNoPy on SHV-1 and PDC-3, chromosomally encoded β-lactamases linked to antibiotic resistance, highlighting its potential to inform drug design and address pressing healthcare challenges.

摘要

蛋白质动力学与功能之间的关系对于理解生物过程和开发有效的治疗方法至关重要。蛋白质中的功能位点对于诸如底物结合、催化和结构变化等活动至关重要。现有的用于预测功能残基的计算方法是基于序列、结构和实验数据进行训练的,但它们没有明确模拟进化对蛋白质动力学的影响。这种被忽视的贡献至关重要,因为众所周知,进化可以通过补偿性突变来微调蛋白质动力学,从而在保持相同结构框架的同时提高蛋白质的性能或使其功能多样化。为了模拟这一关键贡献,我们引入了DyNoPy,这是一种将残基共进化分析与分子动力学模拟相结合的计算方法,揭示功能位点之间隐藏的相关性。DyNoPy构建了残基-残基相互作用的图模型,识别关键残基组的群落,并根据其作用注释关键位点。通过利用共进化动力学耦合的概念——在进化过程中保留了关键动力学相互作用的残基对——DyNoPy提供了一种预测和分析蛋白质进化与动力学的强大方法。我们证明了DyNoPy在SHV-1和PDC-3(与抗生素耐药性相关的染色体编码β-内酰胺酶)上的有效性,突出了其为药物设计提供信息和应对紧迫医疗挑战的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1e0/11952748/9f051202c55f/elife-105005-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验