Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
Clin Microbiol Rev. 2010 Jan;23(1):160-201. doi: 10.1128/CMR.00037-09.
Since the introduction of penicillin, beta-lactam antibiotics have been the antimicrobial agents of choice. Unfortunately, the efficacy of these life-saving antibiotics is significantly threatened by bacterial beta-lactamases. beta-Lactamases are now responsible for resistance to penicillins, extended-spectrum cephalosporins, monobactams, and carbapenems. In order to overcome beta-lactamase-mediated resistance, beta-lactamase inhibitors (clavulanate, sulbactam, and tazobactam) were introduced into clinical practice. These inhibitors greatly enhance the efficacy of their partner beta-lactams (amoxicillin, ampicillin, piperacillin, and ticarcillin) in the treatment of serious Enterobacteriaceae and penicillin-resistant staphylococcal infections. However, selective pressure from excess antibiotic use accelerated the emergence of resistance to beta-lactam-beta-lactamase inhibitor combinations. Furthermore, the prevalence of clinically relevant beta-lactamases from other classes that are resistant to inhibition is rapidly increasing. There is an urgent need for effective inhibitors that can restore the activity of beta-lactams. Here, we review the catalytic mechanisms of each beta-lactamase class. We then discuss approaches for circumventing beta-lactamase-mediated resistance, including properties and characteristics of mechanism-based inactivators. We next highlight the mechanisms of action and salient clinical and microbiological features of beta-lactamase inhibitors. We also emphasize their therapeutic applications. We close by focusing on novel compounds and the chemical features of these agents that may contribute to a "second generation" of inhibitors. The goal for the next 3 decades will be to design inhibitors that will be effective for more than a single class of beta-lactamases.
自青霉素问世以来,β-内酰胺类抗生素一直是抗菌药物的首选。不幸的是,这些救命抗生素的疗效受到细菌β-内酰胺酶的严重威胁。β-内酰胺酶现在导致对青霉素、扩展谱头孢菌素、单酰胺类和碳青霉烯类的耐药性。为了克服β-内酰胺酶介导的耐药性,将β-内酰胺酶抑制剂(克拉维酸、舒巴坦和他唑巴坦)引入临床实践。这些抑制剂大大提高了它们的β-内酰胺类药物(阿莫西林、氨苄西林、哌拉西林和替卡西林)在治疗严重肠杆菌科和耐青霉素葡萄球菌感染方面的疗效。然而,抗生素使用过量的选择压力加速了对β-内酰胺-β-内酰胺酶抑制剂组合的耐药性的出现。此外,对其他类别的对抑制作用具有抗性的临床相关β-内酰胺酶的流行率迅速增加。迫切需要能够恢复β-内酰胺类药物活性的有效抑制剂。在这里,我们回顾了每一类β-内酰胺酶的催化机制。然后,我们讨论了规避β-内酰胺酶介导的耐药性的方法,包括机制基失活剂的特性和特点。接下来,我们强调了β-内酰胺酶抑制剂的作用机制和显著的临床和微生物学特征。我们还强调了它们的治疗应用。最后,我们专注于新型化合物以及这些药物的化学特征,这些特征可能有助于“第二代”抑制剂的开发。未来 30 年的目标将是设计出对不止一类β-内酰胺酶有效的抑制剂。