Suppr超能文献

预测杂交空间中蛋白质的亚细胞定位。

Predicting subcellular localization of proteins in a hybridization space.

作者信息

Cai Yu-Dong, Chou Kuo-Chen

机构信息

Biomolecular Sciences Department, UMIST, PO Box 88, Manchester M60 1QD, UK.

出版信息

Bioinformatics. 2004 May 1;20(7):1151-6. doi: 10.1093/bioinformatics/bth054. Epub 2004 Feb 5.

Abstract

MOTIVATION

The localization of a protein in a cell is closely correlated with its biological function. With the number of sequences entering into databanks rapidly increasing, the importance of developing a powerful high-throughput tool to determine protein subcellular location has become self-evident. In view of this, the Nearest Neighbour Algorithm was developed for predicting the protein subcellular location using the strategy of hybridizing the information derived from the recent development in gene ontology with that from the functional domain composition as well as the pseudo amino acid composition.

RESULTS

As a showcase, the same plant and non-plant protein datasets as investigated by the previous investigators were used for demonstration. The overall success rate of the jackknife test for the plant protein dataset was 86%, and that for the non-plant protein dataset 91.2%. These are the highest success rates achieved so far for the two datasets by following a rigorous cross-validation test procedure, suggesting that such a hybrid approach (particularly by incorporating the knowledge of gene ontology) may become a very useful high-throughput tool in the area of bioinformatics, proteomics, as well as molecular cell biology.

AVAILABILITY

The software would be made available on sending a request to the authors.

摘要

动机

蛋白质在细胞中的定位与其生物学功能密切相关。随着进入数据库的序列数量迅速增加,开发一种强大的高通量工具来确定蛋白质亚细胞定位的重要性已不言而喻。有鉴于此,最近邻算法被开发出来,用于通过将来自基因本体论最新进展的信息与功能域组成以及伪氨基酸组成的信息相结合的策略来预测蛋白质亚细胞定位。

结果

作为一个展示,使用了与之前研究者所研究的相同的植物和非植物蛋白质数据集进行演示。对植物蛋白质数据集进行留一法检验的总体成功率为86%,对非植物蛋白质数据集为91.2%。通过严格的交叉验证测试程序,这些是迄今为止这两个数据集所取得的最高成功率,表明这种混合方法(特别是通过纳入基因本体论知识)可能成为生物信息学、蛋白质组学以及分子细胞生物学领域非常有用的高通量工具。

可用性

向作者提出请求后可获得该软件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验