Suppr超能文献

通过将基于多目标粒子群优化的特征子集选择纳入周氏伪氨基酸组成的一般形式来预测蛋白质亚细胞定位

Prediction of protein subcellular localization by incorporating multiobjective PSO-based feature subset selection into the general form of Chou's PseAAC.

作者信息

Mandal Monalisa, Mukhopadhyay Anirban, Maulik Ujjwal

机构信息

Department of Computer Science and Engineering, University of Kalyani, Kalyani, 741235, West Bengal, India,

出版信息

Med Biol Eng Comput. 2015 Apr;53(4):331-44. doi: 10.1007/s11517-014-1238-7. Epub 2015 Jan 7.

Abstract

In this article, the possible subcellular location of a protein is predicted using multiobjective particle swarm optimization-based feature selection technique. In general form of pseudo-amino acid composition, the protein sequences are used for constructing protein features. Here, the different amino acids compositions are used to construct the feature sets. Therefore, the data are presented as sample of protein versus amino acid compositions as features. The proposed algorithm tries to maximize the feature relevance and minimize the feature redundancy simultaneously. After proposed algorithm is executed on the multiclass dataset, some features are selected. On this resultant feature subset, tenfold cross-validation is applied and corresponding accuracy, F score, entropy, representation entropy and average correlation are calculated. The performance of the proposed method is compared with that of its single objective versions, sequential forward search, sequential backward search, minimum redundancy maximum relevance with two schemes, CFS, CBFS, [Formula: see text], Fisher discriminant and a Cluster-based technique.

摘要

在本文中,使用基于多目标粒子群优化的特征选择技术预测蛋白质可能的亚细胞定位。在伪氨基酸组成的一般形式中,蛋白质序列用于构建蛋白质特征。这里,使用不同的氨基酸组成来构建特征集。因此,数据呈现为蛋白质样本与作为特征的氨基酸组成。所提出的算法试图同时最大化特征相关性并最小化特征冗余。在所提出的算法在多类数据集上执行后,选择了一些特征。在这个结果特征子集上,应用十折交叉验证并计算相应的准确率、F分数、熵、表示熵和平均相关性。将所提出方法的性能与其单目标版本、顺序向前搜索、顺序向后搜索、具有两种方案的最小冗余最大相关性、CFS、CBFS、[公式:见原文]、Fisher判别法和基于聚类的技术进行比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验