Suppr超能文献

基于分子描述符和物理化学性质的底物-酶-产物相互作用预测

Prediction of substrate-enzyme-product interaction based on molecular descriptors and physicochemical properties.

作者信息

Niu Bing, Huang Guohua, Zheng Linfeng, Wang Xueyuan, Chen Fuxue, Zhang Yuhui, Huang Tao

机构信息

Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, 333 Nancheng Road, Shanghai 200444, China.

Institute of Systems Biology, Shanghai University, Shanghai, China ; Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Shanghai 200444, China.

出版信息

Biomed Res Int. 2013;2013:674215. doi: 10.1155/2013/674215. Epub 2013 Dec 22.

Abstract

It is important to correctly and efficiently predict the interaction of substrate-enzyme and to predict their product in metabolic pathway. In this work, a novel approach was introduced to encode substrate/product and enzyme molecules with molecular descriptors and physicochemical properties, respectively. Based on this encoding method, KNN was adopted to build the substrate-enzyme-product interaction network. After selecting the optimal features that are able to represent the main factors of substrate-enzyme-product interaction in our prediction, totally 160 features out of 290 features were attained which can be clustered into ten categories: elemental analysis, geometry, chemistry, amino acid composition, predicted secondary structure, hydrophobicity, polarizability, solvent accessibility, normalized van der Waals volume, and polarity. As a result, our predicting model achieved an MCC of 0.423 and an overall prediction accuracy of 89.1% for 10-fold cross-validation test.

摘要

正确且高效地预测底物 - 酶的相互作用以及预测它们在代谢途径中的产物非常重要。在这项工作中,引入了一种新颖的方法,分别用分子描述符和物理化学性质对底物/产物和酶分子进行编码。基于这种编码方法,采用K近邻算法构建底物 - 酶 - 产物相互作用网络。在我们的预测中,选择能够代表底物 - 酶 - 产物相互作用主要因素的最优特征后,从290个特征中总共获得了160个特征,这些特征可分为十类:元素分析、几何形状、化学性质、氨基酸组成、预测的二级结构、疏水性、极化率、溶剂可及性、归一化范德华体积和极性。结果,我们的预测模型在10折交叉验证测试中获得了0.423的马修斯相关系数和89.1%的总体预测准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccf9/3881445/cd3d985e2325/BMRI2013-674215.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验