Tejedo Juan R, Cahuana Gladys M, Ramírez Remedios, Esbert Margarida, Jiménez Juan, Sobrino Francisco, Bedoya Francisco J
Laboratory of Biochemistry of the Immune System, Department of Medical Biochemistry and Molecular Biology, University of Sevilla, 41009 Sevilla, Spain.
Endocrinology. 2004 May;145(5):2319-27. doi: 10.1210/en.2003-1489. Epub 2004 Feb 5.
Mechanisms involved in the protective action of nitric oxide (NO) in insulin-producing cells are a matter of debate. We have previously shown that pharmacological inhibition of c-Src cancels the antiapoptotic action of low and sustained concentrations of exogenous NO. In this study, using insulin-producing RINm5F cells that overexpress Src either permanently active (v-Src) or dominant negative (dn-Src) forms, we determine that this tyrosine kinase is the principal mediator of the protective action of NO. We also show that Src-directed activation of insulin receptor substrate-1, phosphatidylinositol 3-kinase (PI3K), Akt, and Bad phosphorylation conform a substantial component of the survival route because pharmacological inhibition of PI3K and Akt canceled the antiapoptotic effects of NO. Studies performed with the protein kinase G (PKG) inhibitor KT-5823 revealed that NO-dependent activation of c-Src/ insulin receptor substrate-1 is not affected by PKG activation. By contrast, Akt and Bad activation are partially dependent on PKG activation. Endogenous production of NO after overexpression of endothelial nitric oxide synthase in RINm5F cells mimics the effects produced by generation of low amounts of NO from exogenous diethylenetriamine/NO. In addition, we found that NO produces c-Src/PI3K- and PKG-dependent activation of ERK 1/2. The MAPK kinase inhibitor PD 98059 suppresses NO-dependent protection from DNA fragmentation induced by serum deprivation. The protective action of low and sustained concentration of NO is also observed in staurosporine- and Taxol-induced apoptosis. Finally, NO also protects isolated rat islets from DNA fragmentation induced by serum deprivation. These data strengthen the notion that NO production at physiological levels plays a role in protection from apoptosis in pancreatic beta-cells.
一氧化氮(NO)在胰岛素生成细胞中的保护作用机制一直存在争议。我们之前已经表明,c-Src的药理学抑制会消除低浓度且持续的外源性NO的抗凋亡作用。在本研究中,我们使用永久表达活性形式(v-Src)或显性负性形式(dn-Src)的Src的胰岛素生成RINm5F细胞,确定这种酪氨酸激酶是NO保护作用的主要介质。我们还表明,Src介导的胰岛素受体底物-1、磷脂酰肌醇3激酶(PI3K)、Akt和Bad磷酸化的激活构成了生存途径的重要组成部分,因为PI3K和Akt的药理学抑制消除了NO的抗凋亡作用。用蛋白激酶G(PKG)抑制剂KT-5823进行的研究表明,c-Src/胰岛素受体底物-1的NO依赖性激活不受PKG激活的影响。相比之下,Akt和Bad的激活部分依赖于PKG激活。在RINm5F细胞中过表达内皮型一氧化氮合酶后内源性NO的产生模拟了外源性二乙烯三胺/NO产生少量NO所产生的效果。此外,我们发现NO产生c-Src/PI3K和PKG依赖性的ERK 1/2激活。丝裂原活化蛋白激酶激酶抑制剂PD 98059抑制了NO对血清剥夺诱导的DNA片段化的保护作用。在星形孢菌素和紫杉醇诱导的细胞凋亡中也观察到低浓度且持续的NO的保护作用。最后,NO还保护分离的大鼠胰岛免受血清剥夺诱导的DNA片段化。这些数据强化了这样一种观念,即生理水平的NO产生在保护胰腺β细胞免受凋亡中起作用。