Everaers Ralf, Sukumaran Sathish K, Grest Gary S, Svaneborg Carsten, Sivasubramanian Arvind, Kremer Kurt
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany.
Science. 2004 Feb 6;303(5659):823-6. doi: 10.1126/science.1091215.
The viscoelastic properties of high molecular weight polymeric liquids are dominated by topological constraints on a molecular scale. In a manner similar to that of entangled ropes, polymer chains can slide past but not through each other. Tube models of polymer dynamics and rheology are based on the idea that entanglements confine a chain to small fluctuations around a primitive path that follows the coarse-grained chain contour. Here we provide a microscopic foundation for these highly successful phenomenological models. We analyze the topological state of polymeric liquids in terms of primitive paths and obtain parameter-free, quantitative predictions for the plateau modulus, which agree with experiment for all major classes of synthetic polymers.
高分子量聚合液体的粘弹性特性由分子尺度上的拓扑限制所主导。类似于缠结绳索的情况,聚合物链可以相互滑过但不能相互穿过。聚合物动力学和流变学的管模型基于这样一种观点,即缠结将一条链限制在围绕遵循粗粒化链轮廓的原始路径的小波动范围内。在此,我们为这些非常成功的唯象模型提供了微观基础。我们根据原始路径分析聚合液体的拓扑状态,并获得关于平台模量的无参数定量预测,这与所有主要类别的合成聚合物的实验结果相符。