Suppr超能文献

通过短期倒谱参数和基于神经网络的检测器自动检测语音损伤。

Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors.

作者信息

Godino-Llorente J I, Gómez-Vilda P

机构信息

Universidad Politécnica de Madrid, Escuela Universitaria de Ingeniería Técnica de Telecomunicación, Dpt. of Ingeniería de Circuitos y Sistemas, Ctra. Valencia Km. 7, 28031, Madrid.

出版信息

IEEE Trans Biomed Eng. 2004 Feb;51(2):380-4. doi: 10.1109/TBME.2003.820386.

Abstract

It is well known that vocal and voice diseases do not necessarily cause perceptible changes in the acoustic voice signal. Acoustic analysis is a useful tool to diagnose voice diseases being a complementary technique to other methods based on direct observation of the vocal folds by laryngoscopy. Through the present paper two neural-network based classification approaches applied to the automatic detection of voice disorders will be studied. Structures studied are multilayer perceptron and learning vector quantization fed using short-term vectors calculated accordingly to the well-known Mel Frequency Coefficient cepstral parameterization. The paper shows that these architectures allow the detection of voice disorders--including glottic cancer--under highly reliable conditions. Within this context, the Learning Vector quantization methodology demonstrated to be more reliable than the multilayer perceptron architecture yielding 96% frame accuracy under similar working conditions.

摘要

众所周知,嗓音和语音疾病不一定会在声学语音信号中引起可察觉的变化。声学分析是诊断语音疾病的一种有用工具,是喉镜直接观察声带的其他方法的补充技术。通过本文,将研究两种基于神经网络的分类方法应用于语音障碍的自动检测。所研究的结构是多层感知器和学习向量量化,使用根据著名的梅尔频率系数倒谱参数化计算的短期向量进行馈送。本文表明,这些架构能够在高度可靠的条件下检测语音障碍,包括声门癌。在此背景下,学习向量量化方法被证明比多层感知器架构更可靠,在类似工作条件下产生96%的帧准确率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验