Suppr超能文献

恶臭假单胞菌和大肠杆菌中可溶性黄素蛋白的铬酸盐还原特性

Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli.

作者信息

Ackerley D F, Gonzalez C F, Park C H, Blake R, Keyhan M, Matin A

机构信息

Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.

出版信息

Appl Environ Microbiol. 2004 Feb;70(2):873-82. doi: 10.1128/AEM.70.2.873-882.2004.

Abstract

Cr(VI) (chromate) is a toxic, soluble environmental contaminant. Bacteria can reduce chromate to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of interest. Genetic and protein engineering of suitable enzymes can improve bacterial bioremediation. Many bacterial enzymes catalyze one-electron reduction of chromate, generating Cr(V), which redox cycles, generating excessive reactive oxygen species (ROS). Such enzymes are not appropriate for bioremediation, as they harm the bacteria and their primary end product is not Cr(III). In this work, the chromate reductase activities of two electrophoretically pure soluble bacterial flavoproteins--ChrR (from Pseudomonas putida) and YieF (from Escherichia coli)-were examined. Both are dimers and reduce chromate efficiently to Cr(III) (kcat/Km = approximately 2 x 10(4) M(-1) x s(-1)). The ChrR dimer generated a flavin semiquinone during chromate reduction and transferred >25% of the NADH electrons to ROS. However, the semiquinone was formed transiently and ROS diminished with time. Thus, ChrR probably generates Cr(V), but only transiently. Studies with mutants showed that ChrR protects against chromate toxicity; this is possibly because it preempts chromate reduction by the cellular one-electron reducers, thereby minimizing ROS generation. ChrR is thus a suitable enzyme for further studies. During chromate reduction by YieF, no flavin semiquinone was generated and only 25% of the NADH electrons were transferred to ROS. The YieF dimer may therefore be an obligatory four-electron chromate reducer which in one step transfers three electrons to chromate and one to molecular oxygen. As a mutant lacking this enzyme could not be obtained, the role of YieF in chromate protection could not be directly explored. The results nevertheless suggest that YieF may be an even more suitable candidate for further studies than ChrR.

摘要

六价铬(铬酸盐)是一种有毒的可溶性环境污染物。细菌可将铬酸盐还原为不溶性且毒性较小的三价铬,因此铬酸盐生物修复备受关注。对合适的酶进行基因工程和蛋白质工程改造可改善细菌的生物修复能力。许多细菌酶催化铬酸盐的单电子还原反应,生成五价铬,五价铬发生氧化还原循环,产生过量的活性氧(ROS)。这类酶不适用于生物修复,因为它们会对细菌造成损害,且其主要终产物不是三价铬。在本研究中,检测了两种经电泳纯化的可溶性细菌黄素蛋白——ChrR(来自恶臭假单胞菌)和YieF(来自大肠杆菌)的铬酸盐还原酶活性。二者均为二聚体,能有效地将铬酸盐还原为三价铬(催化常数与米氏常数之比约为2×10⁴ M⁻¹×s⁻¹)。ChrR二聚体在铬酸盐还原过程中产生黄素半醌,并将超过25%的NADH电子转移至活性氧。然而,半醌是短暂形成的,且活性氧随时间减少。因此,ChrR可能会生成五价铬,但只是短暂生成。对突变体的研究表明,ChrR可抵御铬酸盐毒性;这可能是因为它抢先于细胞内的单电子还原剂进行铬酸盐还原,从而将活性氧的生成降至最低。因此,ChrR是适合进一步研究的酶。在YieF还原铬酸盐的过程中,未产生黄素半醌,且只有25%的NADH电子转移至活性氧。因此,YieF二聚体可能是一种必需的四电子铬酸盐还原剂,它一步将三个电子转移至铬酸盐,一个电子转移至分子氧。由于无法获得缺乏这种酶的突变体,因此无法直接探究YieF在铬酸盐保护中的作用。不过,结果表明,YieF可能是比ChrR更适合进一步研究的候选者。

相似文献

引用本文的文献

本文引用的文献

4
Interactions of chromium with microorganisms and plants.铬与微生物和植物的相互作用。
FEMS Microbiol Rev. 2001 May;25(3):335-47. doi: 10.1111/j.1574-6976.2001.tb00581.x.
10
Chromium.
J Toxicol Clin Toxicol. 1999;37(2):173-94. doi: 10.1081/clt-100102418.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验