Martí Sergio, Roca Maite, Andrés Juan, Moliner Vicent, Silla Estanislao, Tuñón Iñaki, Bertrán Juan
Departament de Ciències Experimentals, Universitat Jaume I, Box 224, Castellón, Spain.
Chem Soc Rev. 2004 Feb 20;33(2):98-107. doi: 10.1039/b301875j. Epub 2003 Dec 9.
In this tutorial review we show how the methods and techniques of computational chemistry have been applied to the understanding of the physical basis of the rate enhancement of chemical reactions by enzymes. This is to answer the question: Why is the activation free energy in enzyme catalysed reactions smaller than the activation free energy observed in solution? Two important points of view are presented: Transition State (TS) theories and Michaelis Complex (MC) theories. After reviewing some of the most popular computational methods employed, we analyse two particular enzymatic reactions: the conversion of chorismate to prephenate catalysed by Bacillus subtilis chorismate mutase, and a methyl transfer from S-adenosylmethionine to catecholate catalysed by catechol O-methyltransferase. The results and conclusions obtained by different authors on these two systems, supporting either TS stabilisation or substrate preorganization, are presented and compared. Finally we try to give a unified view, where a preorganized enzyme active site, prepared to stabilise the TS, also favours those reactive conformations geometrically closer to the TS.
在本教程综述中,我们展示了计算化学的方法和技术如何用于理解酶提高化学反应速率的物理基础。这是为了回答以下问题:为什么酶催化反应中的活化自由能比溶液中观察到的活化自由能小?文中介绍了两种重要的观点:过渡态(TS)理论和米氏复合物(MC)理论。在回顾了一些最常用的计算方法后,我们分析了两个特定的酶促反应:枯草芽孢杆菌分支酸变位酶催化分支酸转化为预苯酸,以及儿茶酚O - 甲基转移酶催化从S - 腺苷甲硫氨酸到儿茶酚的甲基转移。展示并比较了不同作者在这两个系统上获得的支持TS稳定或底物预组织的结果和结论。最后,我们试图给出一个统一的观点,即一个预先组织好的酶活性位点,准备好稳定TS,也有利于那些在几何结构上更接近TS的反应构象。