Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States.
Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States.
Biochemistry. 2024 Aug 6;63(15):1925-1940. doi: 10.1021/acs.biochem.4c00076. Epub 2024 Jul 4.
Collagen hydrolysis, catalyzed by Zn(II)-dependent matrix metalloproteinases (MMPs), is a critical physiological process. Despite previous computational investigations into the catalytic mechanisms of MMP-mediated collagenolysis, a significant knowledge gap in understanding remains regarding the influence of conformational sampling and entropic contributions at physiological temperature on enzymatic collagenolysis. In our comprehensive multilevel computational study, employing quantum mechanics/molecular mechanics (QM/MM) metadynamics (MetD) simulations, we aimed to bridge this gap and provide valuable insights into the catalytic mechanism of MMP-1. Specifically, we compared the full enzyme-substrate complex in solution, clusters in solution, and gas-phase to elucidate insights into MMP-1-catalyzed collagenolysis. Our findings reveal significant differences in the catalytic mechanism when considering thermal effects and the dynamic evolution of the system, contrasting with conventional static potential energy surface QM/MM reaction path studies. Notably, we observed a significant stabilization of the critical tetrahedral intermediate, attributed to contributions from conformational flexibility and entropy. Moreover, we found that protonation of the scissile bond nitrogen occurs via proton transfer from a Zn(II)-coordinated hydroxide rather than from a solvent water molecule. Following C-N bond cleavage, the C-terminus remains coordinated to the catalytic Zn(II), while the N-terminus forms a hydrogen bond with a solvent water molecule. Subsequently, the release of the C-terminus is facilitated by the coordination of a water molecule. Our study underscores the pivotal role of protein conformational dynamics at physiological temperature in stabilizing the transition state of the rate-limiting step and key intermediates, compared to the corresponding reaction in solution. These fundamental insights into the mechanism of collagen degradation provide valuable guidance for the development of MMP-1-specific inhibitors.
胶原水解是由 Zn(II)依赖性基质金属蛋白酶(MMPs)催化的,是一种关键的生理过程。尽管先前已经对 MMP 介导的胶原水解的催化机制进行了计算研究,但在理解构象采样和生理温度下的熵贡献对酶促胶原水解的影响方面,仍然存在着显著的知识空白。在我们全面的多层次计算研究中,我们采用量子力学/分子力学(QM/MM)元动力学(MetD)模拟,旨在填补这一空白,并为 MMP-1 的催化机制提供有价值的见解。具体来说,我们比较了溶液中的全酶-底物复合物、溶液中的团簇和气相中的复合物,以阐明 MMP-1 催化胶原水解的机制。我们的研究结果表明,当考虑热效应和系统的动态演化时,与传统的静态势能面 QM/MM 反应路径研究相比,催化机制存在显著差异。值得注意的是,我们观察到关键的四面体型中间体的显著稳定化,这归因于构象灵活性和熵的贡献。此外,我们发现,在 MMP-1 催化的胶原水解过程中,带正电荷的肽键氮的质子化是通过来自 Zn(II)配位的氢氧根离子的质子转移而不是来自溶剂水分子的质子转移来实现的。在 C-N 键断裂后,C 端仍然与催化 Zn(II)配位,而 N 端与溶剂水分子形成氢键。随后,水分子的配位促进了 C 端的释放。我们的研究强调了在生理温度下,蛋白质构象动力学在稳定限速步骤和关键中间体的过渡态方面的关键作用,这与溶液中的相应反应相比。这些对胶原降解机制的基本见解为 MMP-1 特异性抑制剂的开发提供了有价值的指导。