Suppr超能文献

通过对大肠杆菌中硒代磷酸合成酶一种新型发色团的表征揭示的机制见解。

Mechanistic insights revealed through characterization of a novel chromophore in selenophosphate synthetase from Escherichia coli.

作者信息

Wolfe Matt D

机构信息

Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012, USA.

出版信息

IUBMB Life. 2003 Dec;55(12):689-93. doi: 10.1080/15216540310001643431.

Abstract

The incorporation of selenium into specific proteins and tRNAs requires selenophosphate (SePO3), whose formation is catalyzed by selenophosphate synthetase. In a Mg/ATP-dependent reaction, selenophosphate synthetase catalyzes the phosphorylation of selenide to yield AMP, inorganic phosphate, and SePO3. In this report, a previously unrecognized chromophore covalently attached to selenophosphate synthetase is characterized. The UV/Vis spectrum of selenophosphate synthetase has a feature centered at 315 nm that is irreversibly destroyed by alkylation. Moreover, addition of Zn2+, which is known to inhibit selenophosphate synthetase, reversibly quenches the 315 nm absorption. Since Zn2+ is known to bind to Cys17, these data strongly suggest that this residue participates in the 315 nm absorption. Upon incubation with both Mg2+ and ATP, the lambda(max) of the chromophore shifts to 340 nm, and it is shown that the shift requires binding of nucleotide having a hydrolyzable gamma-phosphoryl group. These data indicate that either the chromophore is directly involved in phosphoryl transfer or indirectly reflects a phosphorylation-dependent conformational change in selenophosphate synthetase. This work provides the first spectroscopic handle on catalytic steps associated with SePO3 synthesis, which will be used to study the molecular structure of the chromophore and its role in the catalytic mechanism of selenophosphate synthetase.

摘要

将硒掺入特定蛋白质和tRNA需要硒代磷酸酯(SePO3),其形成由硒代磷酸酯合成酶催化。在镁/ATP依赖性反应中,硒代磷酸酯合成酶催化硒化物的磷酸化,生成AMP、无机磷酸和SePO3。在本报告中,对一种以前未被识别的与硒代磷酸酯合成酶共价连接的发色团进行了表征。硒代磷酸酯合成酶的紫外/可见光谱在315nm处有一个特征峰,该峰可被烷基化不可逆地破坏。此外,已知能抑制硒代磷酸酯合成酶的Zn2+的加入会可逆地淬灭315nm处的吸收。由于已知Zn2+与Cys17结合,这些数据强烈表明该残基参与了315nm处的吸收。在与Mg2+和ATP一起孵育时,发色团的最大吸收波长(λmax)移至340nm,并且表明该移动需要具有可水解γ-磷酸基团的核苷酸的结合。这些数据表明,要么发色团直接参与磷酰基转移,要么间接反映了硒代磷酸酯合成酶中依赖于磷酸化的构象变化。这项工作为与SePO3合成相关的催化步骤提供了第一个光谱学手段,这将用于研究发色团的分子结构及其在硒代磷酸酯合成酶催化机制中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验