Stadtman T C
Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892.
Biofactors. 1994 May;4(3-4):181-5.
S-Phosphocysteine residues in proteins are formed as key intermediates in certain enzyme-catalyzed reactions. In phosphoenolpyruvate (PEP)-dependent carbohydrate transport processes, the phosphoryl group of PEP is transferred sequentially to histidine residues of two cytoplasmic proteins, Enzyme I and HPr, common to all of the PEP-dependent carbohydrate transport systems. The phosphoryl group of HPr then is transferred to an essential histidine and an essential cysteine residue located in the cytoplasmic domains of certain substrate-specific, membrane-bound proteins, the actual transporters. Both the N-phosphohistidine and the S-phosphocysteine residues in these Enzyme II domains are transient catalytic intermediates in the final steps that lead to phosphorylation of the bound carbohydrate substrate. In a different type of biological system, numerous proteins involved in signal transduction pathways are phosphorylated on specific tyrosine residues by various kinases and the effects of these modifications are modulated by a family of protein tyrosine phosphate-specific phosphatases. The mechanism of action of these phosphatases involves the transfer of the phosphoryl group from a phosphotyrosine residue in the protein substrate to an essential ionized cysteine residue in the phosphatase polypeptide forming an S-phosphocysteine residue. Reaction of the latter with water and release of orthophosphate complete the phosphatase-catalyzed reaction. Selenophosphate, formed by phosphorylation of a selenol, is a key selenium donor compound in prokaryotes. This extremely oxygen-labile compound is synthesized from ATP and selenide by selenophosphate synthetase. This novel reactive selenium compound is the selenium donor for selenocysteyl-tRNA biosynthesis and for conversion of 2-thiouridine residues in tRNAs to 2-selenouridine.(ABSTRACT TRUNCATED AT 250 WORDS)
蛋白质中的S-磷酸半胱氨酸残基是某些酶催化反应中的关键中间体。在磷酸烯醇丙酮酸(PEP)依赖性碳水化合物转运过程中,PEP的磷酸基团依次转移到两种细胞质蛋白(酶I和HPr)的组氨酸残基上,这两种蛋白是所有PEP依赖性碳水化合物转运系统所共有的。然后,HPr的磷酸基团转移到位于某些底物特异性膜结合蛋白(实际转运蛋白)细胞质结构域中的一个必需组氨酸和一个必需半胱氨酸残基上。这些酶II结构域中的N-磷酸组氨酸和S-磷酸半胱氨酸残基都是导致结合的碳水化合物底物磷酸化的最后步骤中的瞬时催化中间体。在另一种生物系统中,参与信号转导途径的许多蛋白质被各种激酶在特定酪氨酸残基上磷酸化,这些修饰的作用由一类蛋白质酪氨酸磷酸特异性磷酸酶调节。这些磷酸酶的作用机制涉及将磷酸基团从蛋白质底物中的磷酸酪氨酸残基转移到磷酸酶多肽中一个必需的离子化半胱氨酸残基上,形成一个S-磷酸半胱氨酸残基。后者与水反应并释放正磷酸盐,完成磷酸酶催化的反应。由硒醇磷酸化形成的硒代磷酸是原核生物中关键的硒供体化合物。这种对氧极度不稳定的化合物由硒代磷酸合成酶从ATP和硒化物合成。这种新型的活性硒化合物是硒代半胱氨酰-tRNA生物合成以及将tRNA中的2-硫尿苷残基转化为2-硒尿苷的硒供体。(摘要截于250字)