Ko Yu-Shien, Yeh Hung-I, Ko Yu-Lin, Hsu Yu-Chun, Chen Chin-Fen, Wu Semon, Lee Ying-Shiung, Severs Nicholas J
First Cardiovascular Division, Chang Gung Memorial Hospital, Taipei, Taiwan, Republic of China.
Circulation. 2004 Mar 9;109(9):1172-9. doi: 10.1161/01.CIR.0000117233.57190.BD. Epub 2004 Feb 9.
The 3D structure of the atrioventricular conduction axis incorporating detailed cellular and molecular composition, especially that relating to gap-junctional proteins, is still unclear, impeding mechanistic understanding of cardiac rhythmic disorders.
A 3D model of the rabbit atrioventricular conduction axis was reconstructed by combining histological and immunofluorescence staining on serial sections. The exact cellular boundaries, especially those between transitional cells and atrial myocardium, were demarcated by a dense and irregular desmin-labeling pattern in conductive myocardium. The model demonstrates that the atrioventricular conduction axis is segregated into 2 connecting compartments, 1 predominantly expressing connexin45 (compact node and transitional cells) and the other predominantly coexpressing connexin43 and connexin45 (His bundle, lower nodal cells, and posterior nodal extension). The transitional zone shows unique features of spatial complexity, including a bridging bilayer structure (a deep transitional zone connecting with a superficial atrial-transitional overlay) and asymmetrical continuity (wider atrial-transitional interfaces and shorter atrial-axial distances in the hisian portion than in the ostial portion). In the latter compartment, the His bundle, lower nodal cells, and posterior nodal extension form a continual axis and longitudinal transitional-axial interface.
Key findings of the present study are the demonstration of a distinct anatomical border between transitional and atrial cells, connection between transitional cells and both lower nodal cells and posterior nodal extension, and distinctive connexin expression patterns in different compartments of the rabbit atrioventricular conduction axis. These features, synthesized in a novel 3D model, provide a structural framework for the interpretation of nodal function.
包含详细细胞和分子组成,特别是与缝隙连接蛋白相关的房室传导轴的三维结构仍不清楚,这阻碍了对心律失常机制的理解。
通过对连续切片进行组织学和免疫荧光染色,重建了兔房室传导轴的三维模型。传导心肌中密集且不规则的结蛋白标记模式划定了确切的细胞边界,尤其是过渡细胞与心房肌之间的边界。该模型表明,房室传导轴分为两个连接部分,一个主要表达连接蛋白45(致密结和过渡细胞),另一个主要共表达连接蛋白43和连接蛋白45(希氏束、低位结细胞和后结延伸部分)。过渡区呈现出独特的空间复杂性特征,包括桥接双层结构(深部过渡区与浅表心房 - 过渡覆盖层相连)和不对称连续性(希氏束部分的心房 - 过渡界面更宽,心房 - 轴距离比开口部分短)。在后一个部分中,希氏束、低位结细胞和后结延伸部分形成一个连续的轴和纵向过渡 - 轴界面。
本研究的关键发现是证明了过渡细胞与心房细胞之间存在明显的解剖边界,过渡细胞与低位结细胞和后结延伸部分之间存在连接,以及兔房室传导轴不同部分中独特的连接蛋白表达模式。这些特征在一个新颖的三维模型中整合在一起,为解释结功能提供了一个结构框架。