Glauser Dominique A, Bourquin Florence, Manieri Wanda, Schürmann Peter
Laboratoire de Biochimie végétale, Université de Neuchâtel, CH-2007 Neuchâtel, Switzerland.
J Biol Chem. 2004 Apr 16;279(16):16662-9. doi: 10.1074/jbc.M313851200. Epub 2004 Feb 9.
Ferredoxin:thioredoxin reductase (FTR) is a key regulatory enzyme of oxygenic photosynthetic cells involved in the reductive regulation of important target enzymes. It catalyzes the two-electron reduction of the disulfide of thioredoxins with electrons from ferredoxin involving a 4Fe-4S cluster and an adjacent active-site disulfide. We replaced Cys-57, Cys-87, and His-86 in the active site of Synechocystis FTR by site-directed mutagenesis and studied the properties of the mutated proteins. Mutation of either of the active-site cysteines yields inactive enzymes, which have different spectral properties, indicating a reduced Fe-S cluster when the inaccessible Cys-87 is replaced and an oxidized cluster when the accessible Cys-57 is replaced. The oxidized cluster in the latter mutant can be reversibly reduced with dithionite showing that it is functional. The C57S mutant is a very stable protein, whereas the C87A mutant is more labile because of the missing interaction with the cluster. The replacement of His-86 greatly reduces its catalytic activity supporting the proposal that His-86 increases the nucleophilicity of the neighboring cysteine. Ferredoxin forms non-covalent complexes with wild type (WT) and mutant FTRs, which are stable except with the C87A mutant. WT and mutant FTRs form stable covalent heteroduplexes with active-site modified thioredoxins. In particular, heteroduplexes formed with WT FTR represent interesting one-electron-reduced reaction intermediates, which can be split by reduction of the Fe-S cluster. Heteroduplexes form non-covalent complexes with ferredoxin demonstrating the ability of FTR to simultaneously dock thioredoxin and ferredoxin, which is in accord with the proposed reaction mechanism and the structural analyses.
硫氧还蛋白还原酶(FTR)是光合细胞中的一种关键调节酶,参与重要靶酶的还原调节。它利用来自铁氧化还原蛋白的电子催化硫氧还蛋白二硫键的双电子还原反应,该反应涉及一个4Fe-4S簇和一个相邻的活性位点二硫键。我们通过定点诱变替换了集胞藻FTR活性位点中的半胱氨酸-57、半胱氨酸-87和组氨酸-86,并研究了突变蛋白的性质。活性位点半胱氨酸中的任何一个发生突变都会产生无活性的酶,这些酶具有不同的光谱特性,这表明当难以接近的半胱氨酸-87被替换时,Fe-S簇会减少,而当可接近的半胱氨酸-57被替换时,簇会被氧化。后一种突变体中的氧化簇可以用连二亚硫酸盐可逆地还原,表明它是有功能的。C57S突变体是一种非常稳定的蛋白质,而C87A突变体由于与簇的相互作用缺失而更不稳定。组氨酸-86的替换大大降低了其催化活性,这支持了组氨酸-86增加相邻半胱氨酸亲核性的提议。铁氧化还原蛋白与野生型(WT)和突变型FTR形成非共价复合物,除了与C87A突变体形成的复合物外,这些复合物都是稳定的。WT和突变型FTR与活性位点修饰的硫氧还蛋白形成稳定的共价异源双链体。特别是,与WT FTR形成的异源双链体代表了有趣的单电子还原反应中间体,其可以通过Fe-S簇的还原而分裂。异源双链体与铁氧化还原蛋白形成非共价复合物,证明了FTR同时对接硫氧还蛋白和铁氧化还原蛋白的能力,这与提出的反应机制和结构分析一致。