Suppr超能文献

Structural comparison of metarhodopsin II, metarhodopsin III, and opsin based on kinetic analysis of Fourier transform infrared difference spectra.

作者信息

Klinger A L, Braiman M S

机构信息

Department of Biochemistry, University of Virginia Health Sciences Center, Charlottesville 22908.

出版信息

Biophys J. 1992 Nov;63(5):1244-55. doi: 10.1016/S0006-3495(92)81700-9.

Abstract

Fourier transform infrared difference spectra were measured at 30-s intervals after a complete bleach of rhodopsin (rho) samples at 20 degrees C and three different pH values. At each pH, all of the spectra could be fit globally to two exponential decay processes. Using a branched unimolecular kinetic model in which metarhodopsin II (meta II) is hydrolyzed to opsin and retinal both directly and through metarhodopsin III (meta III), we calculated rho-->meta II, rho-->meta III, and rho-->opsin difference spectra at each of the pH values and obtained estimates for the microscopic rate constants at each pH. Because of assumptions that had to be made about the branching ratio between the meta II decay pathways, some uncertainties remain in our calculated rho-->meta III difference spectrum at each pH. Nevertheless, our data covering long time ranges, especially those obtained at pH 8, place significant new constraints on the spectrum of meta III and thus on its structure. The rho-->meta II spectrum shows no significant pH dependence over the range examined (pH 5.5-8). However, the rho-->meta III and rho-->opsin spectra each include a limited subset of pH-dependent peaks, which are mostly attributable to titratable amino acid side chains. Our observations can be used to refine an earlier conclusion that the visual pigment refolds to a rhodopsin-like conformation during meta II decay (Rothschild, K.J., J. Gillespie, and W.J. DeGrip. 1987 Biophys. J. 51:345-350). Most of this refolding occurs in the same way at pH values ranging from 5.5 to 8 and whether meta II decays to meta III or opsin. Meta II displays unique spectral perturbations that are mostly attributable to a few residues, probably including three to four aspartic or glutamic acids and an arginine.

摘要

相似文献

2
Signaling states of rhodopsin. Formation of the storage form, metarhodopsin III, from active metarhodopsin II.
J Biol Chem. 2003 Jan 31;278(5):3162-9. doi: 10.1074/jbc.M209675200. Epub 2002 Nov 9.
3
Conformations of the active and inactive states of opsin.
J Biol Chem. 2001 Oct 19;276(42):38487-93. doi: 10.1074/jbc.M105423200. Epub 2001 Aug 13.
5
The all-trans-15-syn-retinal chromophore of metarhodopsin III is a partial agonist and not an inverse agonist.
Biochemistry. 2006 Dec 26;45(51):15624-32. doi: 10.1021/bi061970n. Epub 2006 Dec 1.
8
Evidence for rhodopsin refolding during the decay of Meta II.
Biophys J. 1987 Feb;51(2):345-50. doi: 10.1016/S0006-3495(87)83341-6.
9
Structural and functional properties of metarhodopsin III: recent spectroscopic studies on deactivation pathways of rhodopsin.
Phys Chem Chem Phys. 2007 Apr 14;9(14):1648-58. doi: 10.1039/b616365c. Epub 2007 Jan 10.

引用本文的文献

1
Signaling states of rhodopsin. Formation of the storage form, metarhodopsin III, from active metarhodopsin II.
J Biol Chem. 2003 Jan 31;278(5):3162-9. doi: 10.1074/jbc.M209675200. Epub 2002 Nov 9.
2
Time-resolved rhodopsin activation currents in a unicellular expression system.
Biophys J. 1999 Sep;77(3):1333-57. doi: 10.1016/S0006-3495(99)76983-3.
3
Light-induced exposure of the cytoplasmic end of transmembrane helix seven in rhodopsin.
Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12854-9. doi: 10.1073/pnas.95.22.12854.
5
Photoactivation of rhodopsin causes an increased hydrogen-deuterium exchange of buried peptide groups.
Biophys J. 1998 Jan;74(1):192-8. doi: 10.1016/S0006-3495(98)77779-3.

本文引用的文献

1
TAUTOMERIC FORMS OF METARHODOPSIN.
J Gen Physiol. 1963 Nov;47(2):215-40. doi: 10.1085/jgp.47.2.215.
2
Pre-lumirhodopsin and the bleaching of visual pigments.
Nature. 1963 Mar 30;197:1279-86. doi: 10.1038/1971279a0.
3
The decay of metarhodopsin II in cattle rod outer segment membranes: protonation and spectral changes.
Biochem Biophys Res Commun. 1980 Oct 31;96(4):1695-701. doi: 10.1016/0006-291x(80)91369-8.
4
Fourier transform infrared difference spectra of intermediates in rhodopsin bleaching.
Science. 1983 Mar 18;219(4590):1333-5. doi: 10.1126/science.6828860.
5
Dual pathways in the photolysis of rhodopsin: studies using a direct chemical method.
Vision Res. 1981;21(6):833-41. doi: 10.1016/0042-6989(81)90183-8.
6
Pathways in the hydrolysis of vertebrate rhodopsin.
Vision Res. 1984;24(5):459-70. doi: 10.1016/0042-6989(84)90043-9.
8
Proton release and formation of photointermediates after light-induced proton uptake in bovine photoreceptor disc membranes.
Biochem Biophys Res Commun. 1980 May 30;94(2):529-34. doi: 10.1016/0006-291x(80)91263-2.
10
Hydrogen ion changes of rhodopsin. pK changes and the thermal decay of metarhodopsin II380.
Arch Biochem Biophys. 1974 Sep;164(1):275-84. doi: 10.1016/0003-9861(74)90032-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验