Suppr超能文献

Functional equivalence of metarhodopsin II and the Gt-activating form of photolyzed bovine rhodopsin.

作者信息

Kibelbek J, Mitchell D C, Beach J M, Litman B J

机构信息

Department of Biochemistry, University of Virginia Health Sciences Center, Charlottesville 22908.

出版信息

Biochemistry. 1991 Jul 9;30(27):6761-8. doi: 10.1021/bi00241a019.

Abstract

Absorption of a photon by the visual pigment rhodopsin leads to the formation of an activated conformational state, denoted rho*, which is capable of activating the visual G-protein, Gt. The bleaching of rhodopsin can be resolved into a series of spectrally distinct photointermediates. Previous studies suggest that the photointermediate metarhodopsin II (meta II, lambda max of 380 nm) corresponds to the physiologically active form rho*. In the studies reported herein, spectral and enzymological data were analyzed and compared so as to evaluate the temporal correspondence between meta II and rho*. This information was obtained by direct observation of the meta II and rho* decay times in parallel experiments utilizing identical preparations of urea-stripped, bovine retinal rod outer segment disk membranes at pH 8.0, 20 degrees C. Postflash spectra were deconvolved to resolve the meta II absorbance at 380 nm, and a decay time for the loss of meta II of 8.2 min (SD = 0.5 min) was obtained from fitting these data to a single-exponential decay process. The diminishing ability of bleached rhodopsin to activate Gt was measured by monitoring the level of catalyzed exchange of Gt-bound GDP for a nonhydrolyzable GTP analogue. Analysis of the decrease in the initial velocity of nucleotide exchange, measured at various postflash incubation times, yielded a rho* decay time of 7.7 min (SD = 0.5 min) when analyzed as a single-exponential process. The similarity of these decay times provides direct evidence that meta II and rho* are present over the same time regime, and further supports the equivalence of these two forms of photoactivated rhodopsin.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验