Peverini R L, Sale M, Rhine W D, Fagan L M, Lenert L A
Section on Medical Informatics, Stanford University, CA 94305-5479.
Proc Annu Symp Comput Appl Med Care. 1992:567-71.
We present a case study describing our development of a mathematical model to control a clinical parameter in a patient--in this case, the degree of anticoagulation during extracorporeal membrane oxygenation (ECMO) support. During ECMO therapy, an anticoagulant agent (heparin) is administered to prevent thrombosis. Under- or over-coagulation can have grave consequences. To improve control of anticoagulation, we developed a pharmacokinetic-pharmacodynamic (PK-PD) model that predicts activated clotting times (ACT) using the NONMEM program. We then integrated this model into a decision-support system, and validated it with an independent data set. The population model had a mean absolute error of prediction for ACT values of 33.5 seconds, with a mean bias in estimation of -14.3 seconds. Individualization of model-parameter estimates using nonlinear regression improved the absolute error prediction to 25.5 seconds, and lowered the mean bias to -3.1 seconds. The PK-PD model is coupled with software for heuristic interpretation of model results to provide a complete environment for the management of anticoagulation.
我们展示了一个案例研究,描述了我们开发的一个数学模型,用于控制患者的临床参数——在本案例中,是体外膜肺氧合(ECMO)支持期间的抗凝程度。在ECMO治疗期间,会使用抗凝剂(肝素)来预防血栓形成。抗凝不足或过度都可能产生严重后果。为了改善抗凝控制,我们开发了一种药代动力学-药效学(PK-PD)模型,该模型使用NONMEM程序预测活化凝血时间(ACT)。然后,我们将此模型集成到一个决策支持系统中,并用一个独立数据集对其进行了验证。总体模型对ACT值的平均预测绝对误差为33.5秒,估计的平均偏差为-14.3秒。使用非线性回归对模型参数估计进行个体化,将绝对误差预测提高到25.5秒,并将平均偏差降低到-3.1秒。PK-PD模型与用于对模型结果进行启发式解释的软件相结合,为抗凝管理提供了一个完整的环境。