Suppr超能文献

群体药代动力学参数估计方法的评价。III. 单指数模型:常规临床药代动力学数据

Evaluation of methods for estimating population pharmacokinetic parameters. III. Monoexponential model: routine clinical pharmacokinetic data.

作者信息

Sheiner L B, Beal S L

出版信息

J Pharmacokinet Biopharm. 1983 Jun;11(3):303-19. doi: 10.1007/BF01061870.

Abstract

Individual pharmacokinetic parameters quantify the pharmacokinetics of an individual, while population pharmacokinetic parameters quantify population mean kinetics, interindividual kinetic variability, and residual variability, including intraindividual variability and measurement error. Individual pharmacokinetics are estimated by fitting a pharmacokinetic model to individual data. Population pharmacokinetic parameters have traditionally been estimated by doing this separately for each individual, and then combining the individual parameter estimates, the Standard Two Stage (STS) approach. Another approach, NONMEM, appropriately pools data across individuals and is therefore less dependent on individual parameter estimates. This study provides further evidence of NONMEM's validity and usefulness by comparing both approaches on simulated routine-type pharmacokinetic data arising from a monoexponential model. The estimates of population parameters (notably those describing interindividual variability) provided by the STS method are poorer than those provided by NONMEM, especially when there is considerable residual error. Further, NONMEM's estimates of population parameters do not require that the data be restricted to special types of routine data such as those obtained only at steady state, or only at peak or trough, nor do the estimates improve with such data. NONMEM's estimates do improve, however, when a data set is enhanced by the addition of single-observation-per-individual type data. Thus, population parameters can be estimated efficiently from data that simulate real clinical pharmacokinetic conditions.

摘要

个体药代动力学参数量化个体的药代动力学,而群体药代动力学参数则量化群体平均动力学、个体间动力学变异性和残余变异性,包括个体内变异性和测量误差。个体药代动力学是通过将药代动力学模型拟合到个体数据来估计的。传统上,群体药代动力学参数是通过对每个个体分别进行此操作,然后合并个体参数估计值来估计的,即标准两阶段(STS)方法。另一种方法,NONMEM,适当地汇总个体间的数据,因此对个体参数估计的依赖性较小。本研究通过比较这两种方法对由单指数模型产生的模拟常规类型药代动力学数据的处理,进一步证明了NONMEM的有效性和实用性。STS方法提供的群体参数估计值(特别是那些描述个体间变异性的参数)比NONMEM提供的估计值差,尤其是当存在相当大的残余误差时。此外,NONMEM对群体参数的估计不要求数据仅限于特殊类型的常规数据,如仅在稳态、仅在峰值或谷值时获得的数据,并且这些估计值不会因此类数据而得到改善。然而,当通过添加个体单观测类型数据增强数据集时,NONMEM的估计值会得到改善。因此,可以从模拟真实临床药代动力学条件的数据中有效地估计群体参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验