Kalveram K T
Abteilung für Kybernetische Psychologie, Heinrich-Heine-Universität, Düsseldorf, Federal Republic of Germany.
Biol Cybern. 1992;68(2):183-91. doi: 10.1007/BF00201440.
Effects of dynamic coupling, gravity, inertia and the mechanical impedances of the segments of a multi-jointed arm are shown to be neutralizable through a reflex-like operating three layer static feedforward network. The network requires the proprioceptively mediated actual state variables (here angular velocity and position) of each arm segment. Added neural integrators (and/or differentiators) can make the network exhibit dynamic properties. Then, actual feedback is not necessary and the network can operate in a pure feedforward fashion. Feedforward of an additional load can easily be implemented into the network using "descendent gating", and a negative feedback control loop added to the feedforward control reduces errors due to external noise. A training, which combines a least squared error based simultaneous learning rule (LSQ-rule) with a "self-imitation algorithm" based on direct inverse modeling, enables the network to acquire the whole inverse dynamics, limb parameters included, during one short training movement. The considerations presented also hold for multi-jointed manipulators.
研究表明,通过一个类似反射操作的三层静态前馈网络,可以抵消多关节手臂各节段的动态耦合、重力、惯性和机械阻抗的影响。该网络需要各手臂节段通过本体感觉介导的实际状态变量(这里是角速度和位置)。添加神经积分器(和/或微分器)可以使网络表现出动态特性。这样,实际反馈就不再必要,网络可以以纯前馈方式运行。使用“下行门控”可以很容易地将额外负载的前馈实现到网络中,并且在前馈控制中添加负反馈控制回路可以减少外部噪声引起的误差。一种将基于最小二乘误差的同步学习规则(LSQ规则)与基于直接逆建模的“自模仿算法”相结合的训练方法,能使网络在一次短训练运动中获取整个逆动力学,包括肢体参数。这里提出的考虑也适用于多关节操纵器。