Suppr超能文献

混合反馈前馈:自适应神经网络控制的有效设计。

Hybrid feedback feedforward: An efficient design of adaptive neural network control.

机构信息

Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.

School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China.

出版信息

Neural Netw. 2016 Apr;76:122-134. doi: 10.1016/j.neunet.2015.12.009. Epub 2015 Dec 23.

Abstract

This paper presents an efficient hybrid feedback feedforward (HFF) adaptive approximation-based control (AAC) strategy for a class of uncertain Euler-Lagrange systems. The control structure includes a proportional-derivative (PD) control term in the feedback loop and a radial-basis-function (RBF) neural network (NN) in the feedforward loop, which mimics the human motor learning control mechanism. At the presence of discontinuous friction, a sigmoid-jump-function NN is incorporated to improve control performance. The major difference of the proposed HFF-AAC design from the traditional feedback AAC (FB-AAC) design is that only desired outputs, rather than both tracking errors and desired outputs, are applied as RBF-NN inputs. Yet, such a slight modification leads to several attractive properties of HFF-AAC, including the convenient choice of an approximation domain, the decrease of the number of RBF-NN inputs, and semiglobal practical asymptotic stability dominated by control gains. Compared with previous HFF-AAC approaches, the proposed approach possesses the following two distinctive features: (i) all above attractive properties are achieved by a much simpler control scheme; (ii) the bounds of plant uncertainties are not required to be known. Consequently, the proposed approach guarantees a minimum configuration of the control structure and a minimum requirement of plant knowledge for the AAC design, which leads to a sharp decrease of implementation cost in terms of hardware selection, algorithm realization and system debugging. Simulation results have demonstrated that the proposed HFF-AAC can perform as good as or even better than the traditional FB-AAC under much simpler control synthesis and much lower computational cost.

摘要

本文提出了一种高效的混合反馈前馈(HFF)自适应逼近控制(AAC)策略,用于一类不确定的欧拉-拉格朗日系统。控制结构包括反馈回路中的比例-微分(PD)控制项和前馈回路中的径向基函数(RBF)神经网络(NN),它模拟了人类的运动学习控制机制。在存在不连续摩擦的情况下,引入了一个 sigmoid-jump-function NN 以提高控制性能。与传统的反馈 AAC(FB-AAC)设计相比,所提出的 HFF-AAC 设计的主要区别在于,仅使用期望输出,而不是跟踪误差和期望输出,作为 RBF-NN 的输入。然而,这种微小的修改导致了 HFF-AAC 的几个吸引人的特性,包括逼近域的方便选择、RBF-NN 输入数量的减少,以及由控制增益主导的半全局实用渐近稳定性。与以前的 HFF-AAC 方法相比,所提出的方法具有以下两个独特的特点:(i)通过更简单的控制方案实现了所有上述吸引人的特性;(ii)不需要知道植物不确定性的界限。因此,所提出的方法保证了 AAC 设计中控制结构的最小配置和植物知识的最小要求,从而大大降低了硬件选择、算法实现和系统调试方面的实施成本。仿真结果表明,在所提出的 HFF-AAC 下,在更简单的控制综合和更低的计算成本下,其性能可以与传统的 FB-AAC 一样好,甚至更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验