Suppr超能文献

基于反馈误差学习的小脑四个区域的计算模型。

A computational model of four regions of the cerebellum based on feedback-error learning.

作者信息

Kawato M, Gomi H

机构信息

ATR Human Information Processing Research Laboratories, Kyoto, Japan.

出版信息

Biol Cybern. 1992;68(2):95-103. doi: 10.1007/BF00201431.

Abstract

We propose a computationally coherent model of cerebellar motor learning based on the feedback-error-learning scheme. We assume that climbing fiber responses represent motor-command errors generated by some of the premotor networks such as the feedback controllers at the spinal-, brain stem- and cerebral levels. Thus, in our model, climbing fiber responses are considered to convey motor errors in the motor-command coordinates rather than in the sensory coordinates. Based on the long-term depression in Purkinje cells each corticonuclear microcomplex in different regions of the cerebellum learns to execute predictive and coordinative control of different types of movements. Ultimately, it acquires an inverse model of a specific controlled object and complements crude control by the premotor networks. This general model is developed in detail as a specific neural circuit model for the lateral hemisphere. A new experiment is suggested to elucidate the coordinate frame in which climbing fiber responses are represented.

摘要

我们基于反馈误差学习方案提出了一种计算连贯的小脑运动学习模型。我们假设攀爬纤维反应代表由一些运动前网络(如脊髓、脑干和大脑水平的反馈控制器)产生的运动指令误差。因此,在我们的模型中,攀爬纤维反应被认为是在运动指令坐标而非感觉坐标中传递运动误差。基于浦肯野细胞中的长时程抑制,小脑不同区域的每个皮质核微复合体学会对不同类型的运动执行预测性和协调性控制。最终,它获得特定受控对象的逆模型,并补充运动前网络的粗略控制。这个通用模型被详细开发为外侧半球的特定神经回路模型。我们提出了一项新实验,以阐明攀爬纤维反应所代表的坐标框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验