Suppr超能文献

用级联相关神经网络预测蛋白质二级结构。

Predicting protein secondary structure by cascade-correlation neural networks.

作者信息

Wood Matthew J, Hirst Jonathan D

机构信息

School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.

出版信息

Bioinformatics. 2004 Feb 12;20(3):419-20. doi: 10.1093/bioinformatics/btg423. Epub 2004 Jan 22.

Abstract

The back-propagation neural network algorithm is a commonly used method for predicting the secondary structure of proteins. Whilst popular, this method can be slow to learn and here we compare it with an alternative: the cascade-correlation architecture. Using a constructive algorithm, cascade-correlation achieves predictive accuracies comparable to those obtained by back-propagation, in shorter time.

摘要

反向传播神经网络算法是预测蛋白质二级结构的常用方法。虽然这种方法很流行,但学习速度可能较慢,在此我们将其与另一种方法:级联相关架构进行比较。级联相关使用一种构造性算法,能在更短时间内达到与反向传播相当的预测准确率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验