Mesa José Luis
Department of Medical Physiology, School of Medicine, University of Granada, E-18071 Granada, Spain.
Med Hypotheses. 2004;62(2):228-32. doi: 10.1016/S0306-9877(03)00335-9.
In clinical research, suitable visualization techniques of data after statistical analysis are crucial for the researches' and physicians' understanding. Common statistical techniques to analyze data in clinical research are logistic regression models. Among these, the application of binary logistic regression analysis (LRA) has greatly increased during past years, due to its diagnostic accuracy and because scientists often want to analyze in a dichotomous way whether some event will occur or not. Such an analysis lacks a suitable, understandable, and widely used graphical display, instead providing an understandable logit function based on a linear model for the natural logarithm of the odds in favor of the occurrence of the dependent variable, Y. By simple exponential transformation, such a logit equation can be transformed into a logistic function, resulting in predicted probabilities for the presence of the dependent variable, P(Y-1/X). This model can be used to generate a simple graphical display for binary LRA. For the case of a single predictor or explanatory (independent) variable, X, a plot can be generated with X represented by the abscissa (i.e., horizontal axis) and P(Y-1/X) represented by the ordinate (i.e., vertical axis). For the case of multiple predictor models, I propose here a relief 3D surface graphic in order to plot up to four independent variables (two continuous and two discrete). By using this technique, any researcher or physician would be able to transform a lesser understandable logit function into a figure easier to grasp, thus leading to a better knowledge and interpretation of data in clinical research. For this, a sophisticated statistical package is not necessary, because the graphical display may be generated by using any 2D or 3D surface plotter.
在临床研究中,统计分析后合适的数据可视化技术对于研究人员和医生的理解至关重要。临床研究中分析数据的常见统计技术是逻辑回归模型。其中,二元逻辑回归分析(LRA)的应用在过去几年中大幅增加,这是由于其诊断准确性,而且科学家们常常希望以二分法分析某个事件是否会发生。这种分析缺乏一种合适、易懂且广泛使用的图形显示,而是基于支持因变量Y发生的自然对数的线性模型提供一个易懂的对数函数。通过简单的指数变换,这样的对数方程可以转换为逻辑函数,从而得出因变量存在的预测概率P(Y = 1|X)。该模型可用于生成二元LRA的简单图形显示。对于单个预测变量或解释(独立)变量X的情况,可以生成一个图,其中X由横坐标(即水平轴)表示,P(Y = 1|X)由纵坐标(即垂直轴)表示。对于多个预测变量模型的情况,我在此提出一种浮雕3D表面图形,以便绘制多达四个独立变量(两个连续变量和两个离散变量)。通过使用这种技术,任何研究人员或医生都能够将较难理解的对数函数转换为更易于理解的图形,从而更好地了解和解释临床研究中的数据。为此,并不需要复杂的统计软件包,因为可以使用任何2D或3D表面绘图仪生成图形显示。