Suppr超能文献

外科研究统计分析的基本概念。

Basic concepts of statistical analysis for surgical research.

作者信息

Cassidy Laura D

机构信息

Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.

出版信息

J Surg Res. 2005 Oct;128(2):199-206. doi: 10.1016/j.jss.2005.07.005. Epub 2005 Sep 2.

Abstract

Appropriate statistical analyses are an integral part of surgical research. The purpose of this work is to assist surgeons and clinicians with the interpretation of statistics by providing a general understanding of the basic concepts that lead to choosing an appropriate statistical test for common study designs. It is extremely important to understand the nature of the data before embarking on a statistical analysis. A researcher must design an appropriate study around the research hypothesis. Initially, data should be inspected using frequency distributions and graphical techniques. If the data are continuous, the normality of the distribution must be assessed. In addition, the data must be defined as independent or dependent. For normally distributed and independent samples, a two-sample t test is appropriate. A paired t test should be used for dependent data. The nonparametric counterpart to the t test is the Mann-Whitney U and the paired counterpart is the Wilcoxon signed rank. For binary data, contingency table methods such as a chi2 test apply unless the expected value is < 5; then, use the Fisher's exact test. The McNemar test applies to paired binary data. Correlation coefficients assess the association between two continuous distributions. Linear regression assesses trend. Multiple regression analysis is appropriate for multivariate analyses with a continuous outcome variable. Logistic regression methods would apply for binary outcomes. The quality of the analysis and subsequent results of any research project depend on an appropriate study design, data collection, and analysis to make meaningful conclusions.

摘要

恰当的统计分析是外科研究不可或缺的一部分。这项工作的目的是通过对一些基本概念提供总体理解,帮助外科医生和临床医生解读统计数据,这些基本概念有助于为常见的研究设计选择合适的统计检验方法。在进行统计分析之前,了解数据的性质极为重要。研究人员必须围绕研究假设设计合适的研究。首先,应使用频率分布和图形技术检查数据。如果数据是连续的,必须评估分布的正态性。此外,数据必须定义为独立或相关。对于正态分布且独立的样本,合适的是双样本t检验。对于相关数据应使用配对t检验。t检验的非参数对应方法是曼-惠特尼U检验,配对对应方法是威尔科克森符号秩检验。对于二元数据,如果期望值<5,则应用列联表方法(如卡方检验),此时应使用费舍尔精确检验。麦克尼马尔检验适用于配对二元数据。相关系数评估两个连续分布之间的关联。线性回归评估趋势。多元回归分析适用于具有连续结果变量的多变量分析。逻辑回归方法适用于二元结果。任何研究项目的分析质量和后续结果取决于合适的研究设计、数据收集和分析,以便得出有意义的结论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验