Suppr超能文献

Distribution and retranslocation of (15)N lodgepole pine over eight growing seasons.

作者信息

Mead D J, Preston C M

机构信息

Plant Science Department, PO Box 84, Lincoln University, Canterbury, New Zealand.

出版信息

Tree Physiol. 1994 Apr;14(4):389-402. doi: 10.1093/treephys/14.4.389.

Abstract

We studied the distribution and retranslocation of N in 11-year-old Pinus contorta Dougl. trees following a winter application of N at 100 kg ha(-1) as (15)N-urea, (15)NH(4)NO(3) or NH(4) (15)NO(3). In all treatments, there was little uptake of (15)N after the first growing season although labeled N was still present in the soil. In subsequent years, (15)N in the trees was partly retranslocated, and, at the same time, it was diluted by uptake of unlabeled N from the soil. Between Years 1 and 8 after N fertilization, net retranslocation of (15)N from the lower crown (branches formed before fertilization) was 14%, and 18-25% of the (15)N in the trees was translocated to the upper and mid-crown. Overall, uptake of (15)N from nitrate was less than from urea or ammonium. However, when compared with the urea- and ammonium-N sources, (15)N from the nitrate source initially moved as rapidly into the foliage, but a greater proportion of it was retranslocated from the foliage during the second growing season. Nitrogen in foliage and wood formed in the growing season following fertilization was more highly labeled (measured as % N derived from the fertilizer) than in recently formed tissues. Labeling was substantially higher in foliage formed before fertilization than in wood of a similar age. In contrast, N in foliage formed after fertilization had only slightly higher labeling than wood of a similar age, indicating a relatively stable labeling throughout the trees once (15)N uptake had ceased. The concentrations of total and labeled N were substantially higher in foliage than in either wood or bark. There was evidence of N movement into wood tissues formed before fertilization, presumably along rays, and also of N retranslocation out of xylem cells as they matured. This study of internal N cycles was facilitated by the use of (15)N labeling because there was little uptake of labeled N after the first growing season, whereas interpretation based on total N was obscured by substantial uptake of N from the soil. We conclude that retranslocation studies based on measurements of total N content should be avoided.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验