Suppr超能文献

An approach to evaluating and correcting aerodynamic particle sizer measurements for phantom particle count creation.

作者信息

Heitbrink W A, Baron P A

机构信息

U.S. Department of Health and Human Services, Centers for Disease Control, Cincinnati, OH 45226.

出版信息

Am Ind Hyg Assoc J. 1992 Jul;53(7):427-31. doi: 10.1080/15298669291359898.

Abstract

An aerodynamic particle sizer (APS) can be used to make real-time measurements of the aerodynamic particle size distribution over the range of 0.5 to 32 microns. This instrument is very useful in conducting health-related aerosol measurements involving aerosol generation, respirator efficiency, and particulate sampling efficiency. One of the two signal processors within the APS can create spurious or phantom particle counts that can significantly affect relative measurements and calculated mass distributions. In the APS, particle size measurement is based upon a particle's transit time between two laser beams that are perpendicular to an accelerating airflow. The signal processors measure each particle's transit from the time between the two pulses of scattered light that are generated as the particle passes through the two laser beams. When only a single pulse from a particle is detected, another pulse can cause the recording of a randomly sized phantom particle. The small particle processor (SPP), which measures particle transit from the times in digital increments of 4 nanoseconds, can create phantom particles; the large particle processor (LPP), which measures particle transit times in digital increments of 66.67 nanoseconds, is designed to prevent the creation of phantom particles. These two processors overlap in the range of 5.2 to 15.4 microns.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验